Радиоактивные элементы. Химический элемент уран: свойства, характеристика, формула. Добыча и применение урана Уран в периодической системе менделеева

06.01.2024

Уран (U) — элемент с атомным номером 92 и атомным весом 238,029. Является радиоактивным химическим элементом III группы периодической системы Дмитрия Ивановича Менделеева, относится к семейству актиноидов. Уран — очень тяжёлый (в 2,5 раза тяжелее железа, более чем в 1,5 раза тяжелее свинца), серебристо-белый глянцевитый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами.

Природный уран состоит из смеси трех изотопов: 238U (99,274 %) с периодом полураспада 4,51∙109 лет; 235U (0,702 %) с периодом полураспада 7,13∙108 лет; 234U (0,006 %) с периодом полураспада 2,48∙105 лет. Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U. Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца 206Pb и 207Pb.

В настоящее время известно 23 искусственных радиоактивных изотопов урана с массовыми числами от 217 до 242. «Долгожителем» среди них является 233U с периодом полураспада 1,62∙105 лет. Он получается в результате нейтронного облучения тория, способен к делению под воздействием тепловых нейтронов.

Уран открыт в 1789 году немецким химиком Мартином Генрихом Клапротом в результате его опытов с минералом настуран — «урановая смолка». Название новый элемент получил в честь недавно открытой (1781) Уильямом Гершелем планеты — Уран. Последующие полвека полученное Клапротом вещество считалось металлом, однако в 1841 году это опроверг французский химик Эжен Мелькиор Пелиго, который доказал окисную природу урана (UO2), полученного немецким химиком. Самому Пелиго удалось получить металлический уран при восстановлении UCl4 металлическим калием, а так же определить атомный вес нового элемента. Следующим в развитии знаний об уране и его свойствах был Д. И. Менделеев — в 1874 году, опираясь на разработанную им теорию о периодизации химических элементов, он поместил уран в самой дальней клетке своей таблицы. Определенный ранее Пелиго атомный вес урана (120) русский химик удвоил, верность таких предположений была подтверждена через двенадцать лет опытами немецкого химика Циммермана.

На протяжении многих десятилетий уран представлял интерес лишь для узкого круга химиков и естествоиспытателей, применение его также было ограничено — производство стекла и красок. Только с открытием радиоактивности этого металла (в 1896 году Анри Беккерелем) началась промышленная переработка урановых руд с 1898 года. Гораздо позже (1939 год) было открыто явление деления ядер, и с 1942 года уран стал основным ядерным топливом.

Важнейшее свойство урана состоит в том, что ядра некоторых его изотопов способны к делению при захвате нейтронов, в результате такого процесса выделяется громадное количество энергии. Это свойство элемента № 92 используется в ядерных реакторах, служащих источниками энергии, а также лежит в основе действия атомной бомбы. Уран используют в геологии для определения возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов (геохронология). В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин. Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления), например уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи.

Биологические свойства

Уран довольно распространенный элемент в биологической среде, концентраторами этого металла считаются некоторые виды грибов и водорослей, которые входят в цепочку биологического круговорота урана в природе по схеме: вода — водные растения - рыба - человек. Таким образом, с пищей и водой уран попадает в организм человека и животных, а точнее в желудочно-кишечный тракт, где всасывается около процента от поступивших легкорастворимых соединений и не более 0,1 % труднорастворимых. В дыхательные пути и легкие, а также в слизистые оболочки и кожные покровы этот элемент попадает с воздухом. В дыхательных путях, а особенно легких усвоение происходит гораздо интенсивнее: легкорастворимые соединения всасываются на 50 %, а труднорастворимые на 20 %. Таким образом, уран обнаруживается в небольших количествах (10-5 - 10-8 %) в тканях животных и человека. В растениях (в сухом остатке) концентрация урана зависит от его содержания в почве, так при почвенной концентрации 10-4 % в растении содержится 1,5∙10-5 % и менее. Распределение урана по тканям и органам неравномерно, основные места скопления - это костные ткани (скелет), печень, селезенка, почки, а также легкие и бронхо-легочные лимфатические узлы (при попадании в легкие труднорастворимых соединений). Из крови уран (карбонаты и комплексы с белками) довольно быстро выводится. В среднем содержание 92-го элемента в органах и тканях животных и человека составляет 10-7 %. К примеру, в крови крупнорогатого скота содержится 1∙10-8 г/мл урана, в человеческой крови 4∙10-10 г/г. Печень КРС содержит 8∙10-8 г/г, у человека в том же органе 6∙10-9 г/г; селезенка КРС содержит 9∙10-8 г/г, у человека - 4,7∙10-7 г/г. В мышечных тканях крупнорогатого скота накапливается до 4∙10-11 г/г. Кроме того, в человеческом организме уран содержится в легких в пределах 6∙10-9 - 9∙10-9 г/г; в почках 5,3∙10-9 г/г (корковый слой) и 1,3∙10-8 г/г (мозговой слой); в костной ткани 1∙10-9 г/г; в костном мозге 1∙10-8 г/г; в волосах 1,3∙10-7 г/г. Находящийся в костях уран обуславливает постоянное облучение костной ткани (период полного выведения урана из скелета 600 суток). Менее всего этого металла в головном мозге и сердце (около 10-10 г/г). Как говорилось ранее основные пути поступления урана в организм - вода, пища и воздух. Суточная доза поступающего в организм металла с пищей и жидкостями составляет 1,9∙10-6 г, с воздухом - 7∙10-9 г. Однако, каждые сутки уран выводится из организма: с мочой от 0,5∙10-7 г до 5∙10-7 г; с калом от 1,4∙10-6 г до 1,8∙10-6 г. Потери с волосами, ногтями и отмершими чешуйками кожи - 2∙10-8 г.

Ученые предполагают, что уран в мизерных количествах необходим для нормального функционирования организма человека, животных и растений. Однако его роль в физиологии до сих пор не выяснена. Установлено, что среднее содержание 92-го элемента в организме человека составляет порядка 9∙10-5 г (Международная комиссия по радиационной защите). Правда, эта цифра несколько колеблется для различных районов и территорий.

Несмотря на свою пока еще не известную, но определенную биологическую роль в живых организмах, уран остается одним из опаснейших элементов. В первую очередь это проявляется в токсическом действии данного металла, что обусловлено его химическими свойствами, в частности от растворимости соединений. Так, например, более токсичны растворимые соединения (уранил и другие). Чаще всего отравления ураном и его соединениями происходят на обогатительных фабриках, предприятиях по добыче и переработке уранового сырья и других производственных объектах, где уран участвует в технологических процессах.

Проникая в организм, уран поражает абсолютно все органы и их ткани, ведь действие происходит на уровне клетки: он подавляет активность ферментов. Первично поражаются почки, что проявляется в резком увеличении сахара и белка в моче, впоследствии развивается олигурия. Поражению подвергается ЖКТ и печень. Отравления ураном подразделяются на острые и хронические, причем последние развиваются постепенно и могут протекать бессимптомно или со слабо выраженными проявлениями. Однако в последствии хронические отравления приводят к нарушениям кроветворения, нервной системы и прочим серьезным нарушениям здоровья.

В тонне гранитной породы содержится примерно 25 грамм урана. Энергия, способная выделиться при сгорании в реакторе этих 25 грамм, сравнима с энергией, которая выделяется при сгорании 125 тонн каменного угля в топках мощных тепловых котлов! Исходя из этих данных, можно предположить, что в недалеком будущем гранит станут считать одним из видов минерального топлива. Всего же в относительно тонком двадцатикилометровом поверхностном слое земной коры содержится примерно 1014 тонн урана, при переводе в энергетический эквивалент получается просто колоссальная цифра — 2,36.1024 киловатт-часов. Даже все вместе взятые разрабатываемые, разведанные и предполагаемые месторождения горючих ископаемых не способны дать и миллионной доли этой энергии!

Известно, что урановые сплавы, подвергнутые термической обработке, отличаются большими пределами текучести, ползучести и повышенной коррозионной стойкостью, меньшей склонностью к формоизменению изделий при колебаниях температуры и под воздействием облучения. Исходя из этих принципов, в начале XX века и вплоть до тридцатых годов уран в виде карбида применяли в производстве инструментальных сталей. Кроме того, он шел на замену вольфрама в некоторых сплавах, что было дешевле и доступнее. В производстве ферроурана доля U составляла до 30 %. Правда во второй трети XX века такое применение урана сошло на нет.

Как известно в недрах нашей Земли идет постоянный процесс распада изотопов урна. Так вот, учеными было подсчитано, что мгновенное высвобождении энергии всей массы этого металла, заключенного в земную оболочку, разогрело бы нашу планету до температуры в несколько тысяч градусов! Однако такое явление, к счастью, невозможно - ведь выделение тепла идет постепенно - по мере того, как ядра урана и его производных проходят ряд радиоактивных длительных превращений. О продолжительности таких преобразований можно судить по периодам полураспадов природных изотопов урана, например, для 235U он равен 7 108 лет, а для 238U - 4,51 109 лет. Тем не менее, урановое тепло значительно подогревает Землю. Если бы во всей массе Земли было бы столько же урана, как в верхнем двадцатикилометровом слое, то температура на планете была бы значительно выше, чем сейчас. Однако при продвижении к центру Земли концентрация урана снижается.

В ядерных реакторах отрабатывается лишь незначительная часть загруженного урана, связано это с зашлаковыванием топлива продуктами деления: 235U выгорает, цепная реакция постепенно затухает. Однако ТВЭЛы по-прежнему заполнены ядерным горючим, которое необходимо снова употребить. Для этого старые тепловыделяющие элементы демонтируют и отправляют на переработку - их растворяют в кислотах, а уран извлекают из получившегося раствора методом экстракции, осколки деления, от которых нужно избавиться, остаются в растворе. Таким образом, получается, что урановая промышленность практически безотходное химическое производство!

Заводы по разделению изотопов урана занимают территорию в несколько десятков гектаров, примерно такого же порядка и площадь пористых перегородок в разделительных каскадах завода. Это связано со сложностью диффузионного метода разделения изотопов урана - ведь для того чтобы повысить концентрацию 235U от 0,72 до 99 % необходимо несколько тысяч диффузионных ступеней!

Ураново-свинцовым методом геологам удалось узнать возраст самых древних минералов, при исследовании метеоритных пород удалось определить примерную дату зарождения нашей планеты. Благодаря «урановым часам» определили возраст лунного грунта. Что интересно, оказалось, что уже в течение 3 млрд лет на Луне нет вулканической деятельности и естественный спутник Земли остается пассивным телом. Ведь даже самые молодые куски лунного вещества прожили срок больше возраста древнейших земных минералов.

История

Использование урана началось очень давно — еще в I веке до нашей эры природная окись урана использовалась для изготовления жёлтой глазури, использовавшейся при окраске керамики.

В новое время изучение урана происходило постепенно - несколькими этапами, с непрерывным нарастанием. Началом послужило открытие этого элемента в 1789 году немецким натурфилософом и химиком Мартином Генрихом Клапротом, который восстановил добытую из саксонской смоляной руды («урановая смолка») золотисто-жёлтую «землю» до чёрного металлоподобного вещества (оксид урана - UO2). Название было дано в честь самой далёкой из известных в те времена планет - Урана, которую в свою очередь открыл в 1781 году Уильям Гершель. На этом первый этап в изучении нового элемента (Клапрот был уверен в том, что он открыл новый металл) заканчивается, наступает перерыв более чем на пятьдесят лет.

1840 год можно считать началом новой вехи в истории изучения урана. Именно с этого года проблемой получения металлического урана занялся молодой химик из Франции Эжен Мелькиор Пелиго (1811-1890), вскоре (1841) ему это удалось - металлический уран был получен при восстановлении UCl4 металлическим калием. Кроме того, он доказал, что открытый Клапротом уран на самом деле всего лишь его оксид. Также француз определил предположительный атомный вес нового элемента - 120. Затем вновь наступает длительный перерыв в изучении свойств урана.

Лишь в 1874 году появляются новые предположения о природе урана: Дмитрий Иванович Менделеев, следуя разработанной им теории о периодизации химических элементов, находит место новому металлу в своей таблице, размещая уран в последней клетке. Кроме того, Менделеев увеличивает ранее предполагаемый атомный вес урана в двое, не ошибившись и в этом, что подтвердили опыты немецкого химика Циммермана 12 лет спустя.

С 1896 года открытия в области изучения свойств урана «посыпались» одно за другим: в упомянутом выше году совершенно случайно (при исследовании фосфоресценции кристаллов уранилсульфата калия) 43-летний профессор физики Антуан Анри Беккерель открывает «Лучи Беккереля», впоследствии переименованные в радиоактивность Марией Кюри. В том же году Анри Муассан (вновь химик из Франции) разрабатывает способ получения чистого металлического урана.

В 1899 году Эрнестом Резерфордом была обнаружена неоднородность излучения урановых препаратов. Выяснилось, что есть два вида излучения - альфа- и бета-лучи, различные по своим свойствам: они несут различный электрический заряд, имеют различную длину пробега в веществе и ионизирующая способность их также различна. Годом позже были обнаружены и гамма-лучи Полем Вийаром.

Эрнест Резерфорд и Фредерик Содди совместно разработали теорию радиоактивности урана. На основе этой теории в 1907 году Резерфорд предпринял первые опыты по определению возраста минералов при изучении радиоактивных урана и тория. В 1913 году Ф. Содди ввёл понятие об изотопах (от древне-греческого изо - «равный», «одинаковый», и топос - «место»). В 1920 году этот же ученый предположил, что изотопы можно использовать для определения геологического возраста горных пород. Его предположения оказались верны: в 1939 г. Aльфред Oтто Карл Нир оздал первые уравнения для расчёта возраста и применил масс-спектрометр для разделения изотопов.

В 1934 году Энрико Ферми провел ряд опытов по бомбардировке химических элементов нейтронами - частицами, открытыми Дж. Чедвиком в 1932 году. В результате этой операции в уране появлялись неизвестные прежде радиоактивные вещества. Ферми и другие ученые, участвовавшие в его опытах, предположили, что им удалось открыть трансурановые элементы. В течение четырех лет предпринимались попытки обнаружения трансурановых элементов среди продуктов нейтронного обстрела. Закончилось все в 1938 году, когда немецкие химики Отто Ган и Фриц Штрассман установили, что, захватывая свободный нейтрон, ядро изотопа урана 235U делится, при этом выделяется (в расчете на одно ядро урана) достаточно большая энергия, в основном, за счёт кинетической энергии осколков и излучения. Продвинутся дальше, немецким химикам не удалось. Обосновать их теорию смогли Лиза Мейтнер и Отто Фриш. Это открытие было истоком использования внутриатомной энергии, как в мирных, так и в военных целях.

Нахождение в природе

Среднее содержание урана в земной коре (кларк) 3∙10-4 % по массе, это означает, что его больше в недрах земли, чем серебра, ртути, висмута. Уран характерный элемент для гранитного слоя и осадочной оболочки земной коры. Так, в тонне гранита — около 25 грамм элемента № 92. Всего в относительно тонком, двадцатикилометровом, верхнем слое Земли заключено более 1000 тонн урана. В кислых изверженных породах 3,5∙10-4 %, в глинах и сланцах 3,2∙10-4 %, особенно обогащённых органикой, в основных породах 5∙10-5 %, в ультраосновных породах мантии 3∙10-7 %.

Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в виде простых и комплексных ионов, особенно в форме карбонатных комплексов. Немаловажную роль в геохимии урана играют окислительно-восстановительные реакции, все потому, что соединения урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (сероводородах).

Известно более сотни минеральных руд урана, они различны по химическому составу, происхождению, концентрации урана, из всего многообразия лишь дюжина представляет практический интерес. Основными представителями урана, имеющими наибольшее промышленное значение, в природе можно считать окислы - уранинит и его разновидности (настуран и урановая чернь), а также силикаты - коффинит, титанаты - давидит и браннерит; водные фосфаты и арсенаты уранила - урановые слюдки.

Уранинит - UO2 присутствует преимущественно в древних - докембрийских породах в виде четких кристаллических форм. Уранинит образует изоморфные ряды с торианитом ThO2 и иттро-церианитом (Y,Ce)O2. Кроме того, все ураниниты содержат продукты радиогенного распада урана и тория: K, Po, He, Ac, Pb, а также Ca и Zn. Собственно уранинит - высокотемпературный минерал, характерен для гранитных и сиенитовых пегматитов в ассоциации со сложными ниобо-тантало-титанатами урана (колумбит, пирохлор, самарскит и другие), цирконом, монацитом. Кроме того, уранинит встречается в гидротермальных, скарновых и осадочных породах. Крупные месторождения уранинита известны в Канаде, Африке, Соединенных Штатах Америки, Франции и Австралии.

Настуран (U3O8), он же урановая смолка или смоляная обманка, образующий скрытокристаллические колломорфные агрегаты - вулканогенный и гидротермальный минерал, представлен в палеозойских и более молодых высоко- и среднетемпературных образованиях. Постоянные спутники настурана – сульфиды, арсениды, самородные висмут, мышьяк и серебро, карбонаты и некоторые другие элементы. Эти руды очень богаты ураном, но крайне редко встречаются, зачастую в сопровождении радия, это легко объяснимо: радий является прямым продуктом изотопного распада урана.

Урановые черни (рыхлые землистые агрегаты) представлены в основном в молодых - кайнозойских и моложе образованиях, характерны для гидротермальных сульфидно-урановых и осадочных месторождений.

Также уран извлекается в виде побочного продукта из руд, содержащих менее 0,1 %, например, из золотоносных конгломератов.

Основные месторождения урановых руд расположены в США (Колорадо, Северная и Южная Дакота), Канаде (провинции Онтарио и Саскачеван), ЮАР (Витватерсранд), Франции (Центральный массив), Австралии (Северная территория) и многих других странах. В России основным урановорудным регионом является Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана.

Применение

Современная атомная энергетика просто немыслима без элемента № 92 и его свойств. Хотя еще не так давно — до пуска первого ядерного реактора урановые руды добывались в основном для извлечения из них радия. Небольшие количества урановых соединений использовали в некоторых красителях и катализаторах. По сути дела, уран считался элементом, который не имеет почти никакого промышленного значения, и как кардинально изменилась ситуация после открытия способности изотопов урана к делению! Этот металл мгновенно получил статус стратегического сырья № 1.

В наше время основная область применения металлического урана, так же как и его соединений - топливо для ядерных реакторов. Так в стационарных реакторах АЭС применяется малообогащенная (природная) смесь изотопов урана, а в силовых ядерных установках и в реакторах на быстрых нейтронах используется уран высокой степени обогащения.

Наибольшее применение имеет изотоп урана 235U, ведь в нем возможна самоподдерживающаяся цепная ядерная реакция, что не характерно для других изотопов урана. Благодаря именно этому свойству 235U используется как топливо в ядерных реакторах, а также в ядерном оружии. Однако выделение изотопа 235U из природного урана - сложная и дорогостоящая технологическая проблема.

Самый распространенный в природе изотоп урана 238U может делиться, если его бомбардируют высокоэнергетическими нейтронами. Такое свойство данного изотопа используют для увеличения мощности термоядерного оружия - используются нейтроны, порождённые термоядерной реакцией. Кроме того, из изотопа 238U получают изотоп плутония 239Pu, который в свою очередь также может использоваться в ядерных реакторах и в атомной бомбе.

В последнее время большое применение находит искусственно получаемый в реакторах из тория изотоп урана 233U, его получают, облучая в нейтронном потоке ядерного реактора торий:

23290Th + 10n → 23390Th -(β–)→ 23391Pa –(β–)→ 23392U

233U делится тепловыми нейтронами, кроме того, в реакторах с 233U может происходить расширенное воспроизводство ядерного горючего. Так при выгорании в ториевом реакторе килограмма 233U в нем же должно накопиться 1,1 кг нового 233U (в результате захвата нейтронов ядрами тория). В ближайшем будущем уран-ториевый цикл в реакторах на тепловых нейтронах - главный конкурент уран-плутониевого цикла воспроизводства ядерного горючего в реакторах на быстрых нейтронах. Уже сейчас существуют и работают реакторы, использующие этот нуклид в качестве топлива (KAMINI в Индии). 233U также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Другие искусственные изотопы урана не играют заметной роли.

После того, как из природного урана извлекают «нужные» изотопы 234U и 235U, оставшееся сырье (238U) носит название «обеднённый уран», он в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Так как основное использование урана - производство энергии, по этой причине обедненный уран - малополезный продукт с низкой экономической ценностью. Однако из-за своей низкой цены, а также большой плотности и чрезвычайно высокого сечения захвата он используется для радиационной защиты, и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. Кроме того, обедненный уран применяется как балласт в космических спускаемых аппаратах и гоночных яхтах; в высокоскоростных роторах гироскопов, больших маховиках, при бурении нефтяных скважин.

Однако самое известное применение обедненного урана - это использование его в военных целях - в качестве сердечников для бронебойных снарядов и современной танковой броне, например, танка M-1 «Абрамс».

Менее известные области применения урана в основном связаны с его соединениями. Так малая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу, некоторые соединения урана светочувствительны, по этой причине уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.

Карбид 235U в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей. Сплавы железа и обеднённого урана (238U) применяются как мощные магнитострикционные материалы. Уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи, ранее соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).

Производство

Уран получают из урановых руд, которые значительно различаются по ряду признаков (по условиям образования, по «контрастности», по содержанию полезных примесей и др.), основным из которых является процентное содержание урана. Согласно этому признаку различают пять сортов руд: очень богатые (содержат свыше 1 % урана); богатые (1-0,5 %); средние (0,5-0,25 %); рядовые (0,25-0,1 %) и бедные (менее 0,1 %). Однако даже из руд, содержащих 0,01-0,015 % урана, этот металл извлекается в качестве побочного продукта.

За годы освоения уранового сырья разработано немало способов выделения урана из руд. Это связано и со стратегическим значением урана в некоторых областях, и с разнообразием его природных проявлений. Однако, несмотря на все разнообразие методов, и сырьевой базы, любое урановое производство состоит из трех стадий: предварительное концентрирование урановой руды; выщелачивание урана и получение достаточно чистых соединений урана осаждением, экстракцией или ионным обменом. Далее в зависимости от назначения получаемого урана, следует обогащение продукта изотопом 235U или сразу же восстановление элементарного урана.

Итак, первоначально происходит концентрирование руды — порода измельчается и заливается водой. При этом более тяжелые элементы смеси осаждаются быстрее. В породах, содержащих первичные минералы урана, происходит их быстрое осаждение, так как они весьма тяжелы. При концентрировании руд, содержащих вторичные минералы урана, происходит осаждение пустой породы, которая гораздо тяжелее вторичных минералов, но может содержать весьма полезные элементы.

Урановые руды почти не обогащаются, исключением является органический способ радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану.

Следующая стадия в урановом производстве - это выщелачивание, таким образом, происходит переход урана в раствор. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом урана в кислый раствор в виде UO2SO4 или комплексных анионов , а в содовый раствор - в виде 4- комплексного аниона. Метод, при котором применяется серная кислота - дешевле, однако, он не всегда применим - если сырье содержит четырехвалентный уран (урановая смолка), который не растворяется в серной кислоте. В таких случаях используют щелочное выщелачивание или окисляют четырехвалентный уран до шестивалентного состояния. Использование каустической соды (едкого натра) целесообразно при выщелачивании руды, содержащей магнезит или доломит, на растворение которых требуется слишком много кислоты.

После стадии выщелачивания раствор содержит не только уран, но и другие элементы, которые так же, как и уран экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. В такой ситуации для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, дабы на разных стадиях исключать нежелательный элемент. Одно из преимуществ методов ионного обмена и экстракции - достаточно полно извлекается уран из бедных растворов.

После всех перечисленных операций уран переводят в твердое состояние - в один из окислов или в тетрафторид UF4. Такой уран содержит примеси с большим сечением захвата тепловых нейтронов - литий, бор, кадмий, редкоземельные металлы. В конечном продукте их содержание не должно превышать стотысячных и миллионных долей процента! Для этого снова уран растворяется, в этот раз уже в азотной кислоте. Уранилнитрат UO2(NO3)2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2. При температуре от 430 до 600° C окись урана реагирует с сухим фтористым водородом и превращается в тетрафторид UF4. Уже из этого соединения обычно получают металлический уран с помощью кальция или магния обычным восстановлением.

Физические свойства

Металлический уран — очень тяжелый, он тяжелее железа в два с половиной раза, а свинца - в полтора! Это один из самых тяжелых элементов, которые хранятся в недрах Земли. Своим серебристо-белым цветом и блеском уран напоминает сталь. Чистый металл пластичен, мягок, имеет высокую плотность, но в тоже время легко поддается обработке. Уран электроположителен, обладает незначительными парамагнитными свойствами - удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 , имеет малую электропроводность, но высокую реакционную способность. Этот элемент имеет три аллотропических модификации: α, β и γ. α-форма имеет ромбическую кристаллическую решетку со следующими параметрами: a = 2,8538 Å, b = 5,8662 Å, с = 4б9557 Å. Эта форма стабильна в температурном коридоре от комнатных температур до 667,7° C. Плотность урана в α-форме при температуре 25° C составляет 19,05 ±0,2 г/см 3 . β-форма имеет тетрагональную кристаллическую решетку, стабильна в интервале температур от 667,7° C до 774,8° C. Параметры четырехугольной решетки: a = 10,759 Å, b = 5,656 Å. γ-форма с объемно-центрированной кубической структурой, стабильна от 774,8° C до точки плавления (1132° C).

Увидеть все три фазы можно в процессе восстановления урана. Для этого используется специальный аппарат, который представляет собой стальную бесшовную трубу, которая футеруется оксидом кальция, это необходимо, чтобы сталь трубы не взаимодействовала с ураном. В аппарат загружают смесь тетрафторида урана и магния (или кальция), после чего нагревают до 600° C. При достижении этой температуры включают электрический запал, мгновенно протекает экзотермическая реакция восстановления, при этом загруженная смесь полностью плавится. Жидкий уран (температура 1132° C) за счет своего веса полностью опускается на дно. После полного осаждения урана на дно аппарата начинается охлаждение, уран кристаллизуется, его атомы выстраиваются в строгом порядке, образуя кубическую решетку - это и есть γ-фаза. Следующий переход происходит при 774° C - кристаллическая решетка остывающего металла становится тетрагональной, что соответствует β-фазе. Когда температура слитка падает до 668° C, атомы вновь перестраивают свои ряды, располагаясь волнами в параллельных слоях - α-фаза. Далее никаких изменений уже не происходит.

Основные параметры урана всегда относятся к α-фазе. Температура плавления (tпл) 1132° С, температура кипения урана (tкип) 3818° С. Удельная теплоемкость при комнатной температуре 27,67 кдж/(кг·К) или 6,612 кал/(г·° С). Удельное электрическое сопротивление при температуре 25° С примерно 3·10 -7 ом·см, а уже при 600° С 5,5·10 -7 ом·см. Теплопроводность урана также меняется в зависимости от температуры: так в интервале 100-200° С она равна 28,05 вт/(м·К) или 0,067 кал/(см·сек·° С), а при повышении до 400° С увеличивается до 29,72 вт/(м·К) 0,071 кал/(см·сек·° С). Уран обладает сверхпроводимостью при при 0,68 К. Средняя твердость по Бринеллю 19,6 - 21,6·10 2 Мн/м 2 или 200-220 кгс/мм 2 .

Многие механические свойства 92-го элемента зависят от его чистоты, от режимов термической и механической обработки. Так для литого урана предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 или 38-48 кгс/мм 2 , среднее значение модуля упругости 20,5·10 -2 Мн/м2 или 20,9·10 -3 кгс/мм 2 . Прочность урана повышается после закалки из β- и γ-фаз.

Облучение урана потоком нейтронов, взаимодействие с водой, охлаждающей топливные элементы из металлического урана, другие факторы работы в мощных реакторах на тепловых нейтронах - все это приводит к изменениям физико-механических свойства урана: металл становится хрупким, развивается ползучесть, происходит деформация изделий из металлического урана. По этой причине в ядерных реакторах используются урановые сплавы, например с молибденом, такой сплав устойчив к действию воды, упрочняет металл, сохраняя высокотемпературную кубическую решетку.

Химические свойства

В химическом отношении уран весьма активный металл. На воздухе он окисляется с образованием на поверхности радужной пленки двуокиси UO2, которая не предохраняет металл от дальнейшего окисления, как это происходит с титаном, цирконием и рядом других металлов. С кислородом уран образует двуокись UO2, трехокись UO3 и большое количество промежуточных окислов, важнейшим из которых является U3O8, по свойствам эти окислы сходны с UO2 и UO3. В порошкообразном состоянии уран пирофорен и может воспламениться при незначительном нагреве (150 °C и выше), горение сопровождается ярким пламенем, в итоге образуется U3O8. При температуре 500-600 °C уран взаимодействует с фтором с образованием малорастворимых в воде и кислотах игольчатой формы кристаллов зеленого цвета — тетрафторида урана UF4, а также UF6 - гексафторида (белые кристаллы, возгоняемые без плавления при температуре 56,4 °C). UF4, UF6 - примеры взаимодействия урана с галогенами с образованием галогенидов урана. Уран легко соединяется с серой, образуя ряд соединений, из которых наибольшее значение имеет US - ядерное горючее. С водородом уран взаимодействует при 220 °C с образованием гидрида UH3, который химически очень активен. При дальнейшем нагреве UH3 разлагается на водород и порошкообразный уран. Взаимодействие с азотом происходит при более высоких температурах - от 450 до 700 °C и атмосферном давлении получается нитрид U4N7, с повышением давления азота при тех же температурах можно получить UN, U2N3 и UN2. При более высоких температурах (750-800 °C) уран взаимодействует с углеродом с образованием монокарбида UC, дикарбида UC2, а также U2C3. Уран взаимодействует с водой с образованием UO2 и H2, причем с холодной водой медленнее, а с горячей активнее. Кроме того, реакция протекает и с водяным паром при температурах от 150 до 250 °C. Этот металл растворяется в соляной HCl и азотной HNO3 кислотах, менее активно в сильно концентрированной плавиковой кислоте, медленно реагирует с серной H2SO4 и ортофосфорной H3PO4 кислотами. Продуктами реакций с кислотами являются четырехвалентные соли урана. Из неорганических кислот и солей некоторых металлов (золото, платина, медь, серебро, олово и ртуть) уран способен вытеснять водород. Со щелочами уран не взаимодействует.

В соединениях уран способен проявлять следующие степени окисления: +3, +4, +5, +6, иногда +2. U3+ в природных условиях не существует и может быть получен только в лаборатории. Соединения пятивалентного урана по большей части не устойчивы и довольно легко разлагаются на соединения четырех и шестивалентного урана, которые являются наиболее устойчивыми. Для шестивалентного урана характерно образование иона уранила UO22+, соли которого окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах. Примером соединений шестивалентного урана может послужить триоксид урана или урановый ангидрид UO3 (оранжевый порошок), имеющий характер амфотерного оксида. При растворении которого в кислотах образуются соли, например уранилхлорид урана UO2Cl2. При действии щелочей на растворы солей уранила получаются соли урановой кислоты H2UO4 - уранаты и двуурановой кислоты H2U2O7 - диуранаты, например, уранат натрия Na2UO4 и диуранат натрия Na2U2O7. Соли четырехвалентного урана (тетрахлорид урана UCl4) окрашены в зеленый цвет и менее растворимы. При длительном нахождении на воздухе соединения, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.


Уран (лат. Uranium) - радиоактивный химический элемент; атомный номер 92, атомная масса 238,03.
В честь планеты Уран назвал немецкий химик М. Клапрот новый элемент, который он открыл в 1789 г. Но Клапрот получил лишь оксид урана, в металлическом виде его сумел получить французский химик Э. Пелиго в 1841 г. Создавая периодическую систему, Д. И. Менделеев поместил уран в самый ее конец, и долгое время элемент №92 оставался последним элементом в периодической системе. Еще в конце XIX в. этот элемент сыграл важную роль в истории естествознания. В урановых минералах был впервые обнаружен земной гелий.
Изучая фосфоресценцию урановых соединений, А. Беккерель открыл явление радиоактивности.
В 1938 г. немецкие ученые О. Ган и Ф. Штрасман открыли деление урана под действием медленных нейтронов. Спустя год советские физики Г. Н. Флеров и К. А. Петржак доказали, что ядра урана способны делиться самопроизвольно. Эти открытия положили начало эре освоения атомной энергии.
Облучая уран нейтронами, американские ученые Э. Макмиллан и Ф. Эйблсон искусственно синтезировали первый трансурановый элемент - нептуний. Тем самым в 1940 г. уран перестал быть последним элементом в периодической системе. Однако вопрос о месте в ней урана вызывал споры среди ученых. Будучи похож на молибден и вольфрам по химическим свойствам, уран может быть помещен в VII подгруппу периодической системы, как это и было до открытия трансурановых элементов. В соответствии же с представлениями об актиноидах, уран является членом этого семейства, хотя он имеет мало общего с соседними элементами - протактинием и нептунием.
В природе существуют три изотопа урана с массовыми числами 238, 235 и 234, причем 238U и 235U - родоначальники радиоактивных семейств. Периоды их полураспада соответственно равны 4,51 109 лет, 7,13 10^8 лет и 2,48 10^5 лет.
В земной коре урана содержится около 2,5 10^-4% по массе, причем на долю 238U приходится 99,28% всего количества урана, а на долю 235U - 0,714%. Но именно последний изотоп играет главную роль в ядерных превращениях, происходящих под действием медленных нейтронов. Делятся только ядра 235U. При этом образуются два близких по массе осколка - ядра элементов середины периодической системы - и 2 или 3 нейтрона на каждое разделившееся ядро. Эти нейтроны захватываются другими ядрами 235U, и начинается цепная реакция деления, которая сопровождается выделением большого количества энергии.
Если этой реакцией не управлять, произойдет ядерный взрыв. Управление ядерной реакцией деления лежит в основе работы ядерных реакторов.
Изотоп 238U не делится под действием медленных нейтронов, а превращается в изотоп 239U. Испуская бета-частицу, он превращается в конце концов в 239Рu. Этот изотоп плутония является превосходным ядерным топливом.
Долгое время уран применялся ограниченно: его оксиды и соли используются лишь для окраски стекол и в фотографии. Положение коренным образом изменилось когда была открыта цепная реакция деления урана. Уран и его соединения используются в основном в качестве горючего в ядерных реакторах.

Открытие планетарного масштаба. Так можно назвать обнаружение учеными Урана. Планета открыта в 1781-ом году.

Ее обнаружение стало поводом для наречения одного из элементов таблицы Менделеева . Уран металлический выделили из смоляной обманки в 1789-ом.

Шумиха вокруг новой планеты еще не улеглась, поэтому, идея о названии нового вещества лежала на поверхности.

В конце 18-го века еще не было понятия радиоактивности. Между тем, это основное свойство земного урана.

Ученые, работавшие с ним, облучались, сами того не зная. Кто был первопроходцем, и каковы другие свойства элемента, расскажем далее.

Свойства урана

Уран – элемент , открытый Мартином Клапротом. Он сплавил смоляную с едким . Продукт сплавления был неполностью растворим.

Клапрот понял, что предполагаемых , и в составе минерала нет. Тогда, ученый растворил обманку в .

Из раствора выпали шестигранные зеленого цвета. На них химик воздействовал желтой кровяной , то есть, гексацианоферратом калия.

Из раствора выпал бурый осадок. Этот окисел Клапрот восстановил льняным маслом, прокалил. Получился порошок.

Пришлось прокаливать уже его, смешав с бурым . В спекшейся массе обнаружились зерна нового металла.

Позже выяснилось, что это был не чистый уран , а его диоксид. Отдельно элемент получили лишь через 60 лет, в 1841-ом году. А еще через 55 Антуан Беккерель открыл явление радиоактивности.

Радиоактивность урана обусловлена способностью ядра элемента захватывать нейтроны и дробиться. При этом, выделяется внушительная энергия.

Она обусловлена кинетическими данными излучения и осколков. Есть возможность обеспечить непрерывное деление ядер.

Цепная реакция запускается при обогащении природного урана его 235-ым изотопом. Его не то, чтобы добавляют в металл.

Наоборот, из руды убирают малорадиоактивный и неэффективный 238-ой нуклид, а так же, 234-ый.

Их смесь именуют обедненной, а оставшийся уран называют обогащенным. Именно такой нужен промышленникам. Но, об этом поговорим в отдельной главе.

Уран излучает , как альфа-, так и бета- с гамма-лучами. Их обнаружили, увидев влияние металла на фотографическую пластину, обернутую черной .

Стало понятно, что новый элемент что-то излучает. Пока супруги Кюри исследовали, что именно, Мария получила дозу радиации, ставшей причиной развития у химика рака крови, от которого женщина умерла в 1934-ом году.

Бета-излучение способно разрушить не только человеческий организм, но и сам металл. Какой элемент образуется из урана? Ответ: — бревий.

Иначе его называют протактинием. Обнаружен в 1913-ом, как раз при изучении урана.

Последний превращается в бревий без сторонних воздействий и реактивов, лишь от бета-распада.

Внешне уран – химический элемент — цвета с металлическим блеском.

Так выглядят все актиноиды, к коим и относится 92-ое вещество. Начинается группа с 90-го номера, а заканчивается 103-им.

Стоя в начале списка, радиоактивный элемент уран , проявляет себя, как окислитель. Степени окисления могут быть 2-ой, 3-ей, 4-ой, 5-ой, 6-ой.

То есть, химически 92-ой металл активен. Если истереть уран в порошок, он самовоспламениться на воздухе.

В обычном виде вещество окислится при контакте с кислородом, покрывшись радужной пленкой.

Если довести температуру до 1000 градусов Цельсия, хим. элемент уран соединиться с . Образуется нитрид металла. Это вещество желтого цвета.

Брось его в воду, — раствориться, как и чистый уран. Разъедают его и все кислоты. Из органических элемент вытесняет водород.

Выталкивает его уран, так же, из соляных растворов , , , , . Если такой раствор встряхнуть, частицы 92-го металла начнут светиться.

Урановые соли нестабильны, распадаются на свету, или в присутствии органики.

Индифферентен элемент, пожалуй, лишь к щелочам. С ними в реакцию металл не вступает.

Открытие урана – это обнаружение сверхтяжелого элемента. Его масса позволяет выделить металл, точнее, минералы с ним, из руды.

Достаточно раздробить ее и засыпать в воду. Урановые частицы осядут первыми. С этого начинается добыча металла. Подробности, в следующей главе.

Добыча урана

Получив тяжелый осадок, промышленники выщелачивают концентрат. Цель – перевести уран в раствор. Используют серную кислоту.

Исключение делают для смолки. Этот минерал в кислоте не растворим, поэтому, используют щелочи. Секрет трудностей в 4-валентном состоянии урана.

Не проходит кислотное выщелачивание и с , . В этих минералах 92-ой металл тоже 4-валентный.

На такой воздействуют гидроксидом , известным, как едкий натр. В остальных случаях хороша кислородная продувка. Не надо отдельно запасаться серной кислотой.

Достаточно нагреть руду с сульфидными минералами до 150-ти градусов и направить на нее кислородную струю. Это ведет к образованию в кислоты, вымывающей уран .

Химический элемент и его применение связаны с чистыми формами металла. Дабы убрать примеси, используют сорбцию.

Ее проводят на ионообменных смолах. Подходит, так же, экстракция органическими растворителями.

Остается добавить в раствор щелочь, чтобы осадить уранаты аммония, растворить их в азотной кислоте и подвергнуть .

Итогом станут оксиды 92-го элемента. Их нагревают до 800-от градусов и восстанавливают водородом.

Итоговый оксид переводят во фторид урана , из которого кальциетермическим восстановлением и получают чистый металл. , как видно, не из простых. Зачем же так стараться?

Применение урана

92-ой металл – основное топливо ядерных реакторов. Обедненная смесь подходит для стационарных, а для силовых установок используют обогащенный элемент.

235-ый изотоп, так же, — основа ядерного оружия. Из 92-го металла можно получить и вторичное ядерное топливо.

Здесь стоит задаться вопросом, в какой элемент превращается уран . Из его 238-го изотопа получают , — еще одно радиоактивное, сверхтяжелое вещество.

У самого 238-го урана велик период полураспада , ондлится 4,5 миллиардов лет. Столь длительное разрушение приводит к малой энергоемкости.

Если рассматривать применение соединений урана, пригождаются его оксиды. Их используют в стекольной промышленности.

Оксиды выступают красителями. Можно получить от бледно-желтых до темно-зеленых. В ультрафиолетовых лучах материал флуоресцирует.

Это свойство используют не только в стеклах, но и урановых глазурях для . Оксидов урана в них от 0,3 до 6%.

В итоге, фон безопасен, не превышает 30-ти микрон в час. Фото элементов урана , точнее, изделий с его участием, весьма красочны. Свечение стекол и посуды притягивает взоры.

Цена урана

За килограмм необогащенной окиси урана дают около 150-ти долларов. Пиковые значения наблюдались в 2007-ом.

Тогда стоимость достигала 300-от долларов за кило. Разработки урановых руд останутся рентабельными и при цене в 90-100 условных единиц.

Кто открыл элемент уран , не знал, каковы его запасы в земной коре. Теперь, они подсчитаны.

Крупные месторождения с рентабельной ценой добычи истощатся к 2030-му году.

Если не откроют новых залежей, или не найдут альтернативы металлу, его стоимость поползет вверх.

; атомный номер 92, атомная масса 238,029; металл. Природный Уран состоит из смеси трех изотопов: 238 U - 99,2739% с периодом полураспада T ½ = 4,51·10 9 лет, 235 U - 0,7024% (T ½ = 7,13·10 8 лет) и 234 U - 0,0057% (T ½ = 2,48·10 5 лет).

Из 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240 долгоживущий - 233 U (T ½ = 1 ,62·10 5 лет); он получается при нейтронном облучении тория. 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Историческая справка. Уран открыт в 1789 немецким химиком М. Г. Клапротом и назван им в честь планеты Уран, открытой В. Гершелем в 1781. В металлическом состоянии Уран получен в 1841 французским химиком Э. Пелиго при восстановлении UCl 4 металлическим калием. Первоначально Уран приписывали атомную массу 120, и только в 1871 году Д. И. Менделеев пришел к выводу, что эту величину надо удвоить.

Длительное время уран представлял интерес только для узкого круга химиков и находил ограниченное применение для производства красок и стекла. С открытием явления радиоактивности Урана в 1896 году и радия в 1898 году началась промышленного переработка урановых руд с целью извлечения и использования радия в научных исследованиях и медицине. С 1942 года, после открытия в 1939 году явления деления ядер, Уран стал основным ядерным топливом.

Распространение Урана в природе. Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Среднее содержание Урана в земной коре (кларк) 2,5·10 -4 % по массе, в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5 ·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в форме простых и комплексных ионов, особенно в форме карбонатных комплексов. Важную роль в геохимии Урана играют окислительно-восстановительные реакции, поскольку соединения Урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (например, сероводородных).

Известно около 100 минералов Урана; промышленное значение имеют 12 из них. В ходе геологической истории содержание Урана в земной коре уменьшилось за счет радиоактивного распада; с этим процессом связано накопление в земной коре атомов Рb, He. Радиоактивный распад Урана играет важную роль в энергетике земной коры, являясь существенным источником глубинного тепла.

Физические свойства Урана. Уран по цвету похож на сталь, легко поддается обработке. Имеет три аллотропических модификации - α, β и γ с температурами фазовых превращений: α → β 668,8 °С, β → γ 772,2 °С; α-форма имеет ромбическую решетку (а = 2,8538Å, b = 5.8662Å, с = 4.9557Å), β-форма - тетрагональную решетку (при 720 °С а = 10,759Å, b = 5,656Å), γ-форма - объемноцентрированную кубическую решетку (при 850 °С а = 3,538Å). Плотность Урана в α-форме (25 °С) 19,05 г/см 3 ; t пл 1132 °С; t кип 3818 °С; теплопроводность (100-200 °С), 28,05 вт/(м·К) , (200-400 °С) 29,72 вт/(м·К) ; удельная теплоемкость (25 °С) 27,67 кдж/(кг·К) ; удельное электросопротивление при комнатной температуре около 3·10 -7 ом·см, при 600 °С 5,5·10 -7 ом·см; обладает сверхпроводимостью при 0,68 К; слабый парамагнетик, удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 .

Механические свойства Урана зависят от его чистоты, от режимов механической и термической обработки. Среднее значение модуля упругости для литого Уран 20,5·10 -2 Мн/м 2 ; предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 ; прочность повышается после закалки из β- и γ-фаз; средняя твердость по Бринеллю 19,6-21,6·10 2 Мн/м 2 .

Облучение потоком нейтронов (которое имеет место в ядерном реакторе) изменяет физико-механические свойства Урана: развивается ползучесть и повышается хрупкость, наблюдается деформация изделий, что заставляет использовать Уран в ядерных реакторах в виде различных урановых сплавов.

Уран - радиоактивный элемент. Ядра 235 U и 233 U делятся спонтанно, а также при захвате как медленных (тепловых), так и быстрых нейтронов с эффективным сечением деления 508·10 -24 см 2 (508 барн) и 533·10 -24 см 2 (533 барн) соответственно. Ядра 238 U делятся при захвате только быстрых нейтронов с энергией не менее 1 Мэв; при захвате медленных нейтронов 238 U превращается в 239 Рu, ядерные свойства которого близки к 235 U. Критическая масса Урана (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара - около 50 кг, для шара с отражателем - 15-23 кг; критическая масса 233 U- примерно 1/3 критической массы 235 U.

Химические свойства Урана. Конфигурация внешней электронной оболочки атома Урана 7s 2 6d l 5f 3 . Уран относится к реакционноспособным металлам, в соединениях проявляет степени окисления +3, +4, + 5, +6, иногда +2; наиболее устойчивы соединения U (IV) и U (VI). На воздухе медленно окисляется с образованием на поверхности пленки оксида (IV), которая не предохраняет металл от дальнейшего окисления. В порошкообразном состоянии Уран пирофорен и горит ярким пламенем. С кислородом образует оксид (IV) UO 2 , оксид (VI) UО 3 и большое число промежуточных оксидов, важнейший из которых U 3 O 8 . Эти промежуточные оксиды по свойствам близки к UO 2 и UO 3 . При высоких температуpax UO 2 имеет широкую область гомогенности от UO 1, 60 до UO 2,27 . С фтором при 500-600 °С образует тетрафторид UF 4 (зеленые игольчатые кристаллы, малорастворимые в воде и кислотах) и гексафторид UF 6 (белое кристаллическое вещество, возгоняющееся без плавления при 56,4 °С); с серой - ряд соединений, из которых наибольшее значение имеет US (ядерное горючее). При взаимодействии Урана с водородом при 220 °С получается гидрид UH 3 ; с азотом при температуре от 450 до 700 °С и атмосферном давлении - нитрид U 4 N 7 , при более высоком давлении азота и той же температуре можно получить UN, U 2 N 3 и UN 2 ; с углеродом при 750-800 °С - монокарбид UC, дикарбид UC 2 , а также U 2 С 3 ; с металлами образует сплавы различных типов. Уран медленно реагирует с кипящей водой с образованием UO 2 н Н 2 , с водяным паром - в интервале температур 150-250 °С; растворяется в соляной и азотной кислотах, слабо - в концентрированной плавиковой кислоте. Для U (VI) характерно образование иона уранила UO 2 2+ ; соли уранила окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах; соли U (IV) окрашены в зеленый цвет и менее растворимы; ион уранила чрезвычайно способен к комплексообразованию в водных растворах как с неорганических, так и с органических веществами; наиболее важны для технологии карбонатные, сульфатные, фторидные, фосфатные и других комплексы. Известно большое число уранатов (солей не выделенной в чистом виде урановой кислоты), состав которых меняется в зависимости от условий получения; все уранаты имеют низкую растворимость в воде.

Уран и его соединения радиационно и химически токсичны. Предельно допустимая доза (ПДД) при профессиональном облучении 5 бэр в год.

Получение Урана. Уран получают из урановых руд, содержащих 0,05-0,5% U. Руды практически не обогащаются, за исключением ограниченного способа радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом Урана в кислый раствор в виде UО 2 SO 4 или комплексных анионов 4- , а в содовый раствор - в виде 4- . Для извлечения и концентрирования Урана из растворов и пульп, а также для очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органических растворителями (трибутилфосфат, алкилфосфорные кислоты, амины). Далее из растворов добавлением щелочи осаждают уранаты аммония или натрия или гидрооксид U(OH) 4 . Для получения соединений высокой степени чистоты технические продукты растворяют в азотной кислоте и подвергают аффинажным операциям очистки, конечными продуктами которых являются UO 3 или U 3 О 8 ; эти оксиды при 650-800 °С восстанавливаются водородом или диссоциированным аммиаком до UO 2 с последующим переводом его в UF 4 обработкой газообразным фтористым водородом при 500-600 °С. UF 4 может быть получен также при осаждении кристаллогидрата UF 4 ·nН 2 О плавиковой кислотой из растворов с последующим обезвоживанием продукта при 450 °С в токе водорода. В промышленности основные способом получения Уран из UF 4 является его кальциетермическим или магниетермическим восстановление с выходом Урана в виде слитков массой до 1,5 т. Слитки рафинируются в вакуумных печах.

Очень важным процессом в технологии Урана является обогащение его изотопом 235 U выше естественного содержания в рудах или выделение этого изотопа в чистом виде, поскольку именно 235 U - основные ядерное горючее; осуществляется это методами газовой термодиффузии, центробежными и другими методами, основанными на различии масс 238 U и 235 U; в процессах разделения Уран используется в виде летучего гексафторида UF 6 . При получении Урана высокой степени обогащения или изотопов учитываются их критические массы; наиболее удобный способ в этом случае - восстановление оксидов Урана кальцием; образующийся при этом шлак СаО легко отделяется от Урана растворением в кислотах. Для получения порошкообразного Урана, оксида (IV), карбидов, нитридов и других тугоплавких соединений применяются методы порошковой металлургии.

Применение Урана. Металлический Уран или его соединения используются в основном в качестве ядерного горючего в ядерных реакторах. Природная или малообогащенная смесь изотопов Урана применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения - в ядерных силовых установках или в реакторах, работающих на быстрых нейтронах. 235 U является источником ядерной энергии в ядерном оружии. 238 U служит источником вторичного ядерного горючего - плутония.

Уран в организме. В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В золе растений (при содержании Уран в почве около 10 -4 %) его концентрация составляет 1,5·10 -5 %. В наибольшей степени Уран накапливается некоторыми грибами и водорослями (последние активно участвуют в биогенной миграции Урана по цепи вода - водные растения - рыба - человек). В организм животных и человека Уран поступает с пищей и водой в желудочно-кишечный тракт, с воздухом в дыхательные пути, а также через кожные покровы и слизистые оболочки. Соединения Уран всасываются в желудочно-кишечном тракте - около 1% от поступающего количества растворимых соединений и не более 0,1% труднорастворимых; в легких всасываются соответственно 50% и 20%. Распределяется Уран в организме неравномерно. Основное депо (места отложения и накопления) - селезенка, почки, скелет, печень и, при вдыхании труднорастворимых соединений, - легкие и бронхолегочные лимфатические узлы. В крови Уран (в виде карбонатов и комплексов с белками) длительно не циркулирует. Содержание Уран в органах и тканях животных и человека не превышает 10 -7 г/г. Так, кровь крупного рогатого скота содержит 1·10 -8 г/мл, печень 8·10 -8 г/г, мышцы 4·10 -11 г/г, селезенка 9·10 8-8 г/г. Содержание Урана в органах человека составляет: в печени 6·10 -9 г/г, в легких 6·10 -9 -9·10 -9 г/г, в селезенке 4,7·10 -7 г/г, в крови 4-10 -10 г/мл, в почках 5,3·10 -9 (корковый слой) и 1,3·10 -8 г/г (мозговой слой), в костях 1·10 -9 г/г, в костном мозге 1 -Ю -8 г/г, в волосах 1,3·10 -7 г/г. Уран, содержащийся в костной ткани, обусловливает ее постоянное облучение (период полувыведения Урана из скелета около 300 суток). Наименьшие концентрации Урана - в головном мозге и сердце (10 -10 г/г). Суточное поступление Урана с пищей и жидкостями - 1,9·10 -6 г, с воздухом - 7·10 -9 г. Суточное выведение Уран из организма человека составляет: с мочой 0,5·10 -7 - 5·10 -7 г, с калом - 1,4·10 -6 -1,8·10 -6 г, с волосами - 2·10 -8 г.

По данным Международной комиссии по радиационной защите, среднее содержание Урана в организме человека 9·10 -5 г. Эта величина для различных районов может варьировать. Полагают, что Уран необходим для нормальной жизнедеятельности животных и растений.

Токсическое действие Уран обусловлено его химические свойствами и зависит от растворимости: более токсичны уранил и других растворимые соединения Урана. Отравления Ураном и его соединениями возможны на предприятиях по добыче и переработке уранового сырья и других промышленного объектах, где он используется в технологическом процессе. При попадании в организм Уран действует на все органы и ткани, являясь общеклеточным ядом. Признаки отравления обусловлены преимущественным поражением почек (появление белка и сахара в моче, последующая олигурия); поражаются также печень и желудочно-кишечный тракт. Различают острые и хронические отравления; последние характеризуются постепенным развитием и меньшей выраженностью симптомов. При хронической интоксикации возможны нарушения кроветворения, нервной системы и др. Полагают, что молекулярный механизм действия Урана связан с его способностью подавлять активность ферментов.

Уран (лат. Uranium), U, радиоактивный химический элемент III группы периодической системы Менделеева, относится к семейству актиноидов , атомный номер 92, атомная масса 238,029; металл. Природный У. состоит из смеси трёх изотопов: 238 U = 99,2739% с периодом полураспада T 1 / 2 = 4,51·10 9 лет, 235 U = 0,7024% (T 1 / 2 = 7,13·10 8 лет) и 234 U = 0,0057% (T 1 / 2 = 2,48·10 5 лет). Из 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240 долгоживущий = 233 U (T 1 / 2 = 1,62·10 5 лет); он получается при нейтронном облучении тория. 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Историческая справка. У. открыт в 1789 нем. химиком М. Г. Клапротом и назван им в честь планеты Уран, открытой В. Гершелем в 1781. В металлическом состоянии У. получен в 1841 франц. химиком Э. Пелиго при восстановлении UCl 4 металлическим калием. Первоначально У. приписывали атомную массу 120, и только в 1871 Д. И. Менделеев пришёл к выводу, что эту величину надо удвоить.

Длительное время уран представлял интерес только для узкого круга химиков и находил ограниченное применение для производства красок и стекла. С открытием явления радиоактивности У. в 1896 и радия в 1898 началась промышленная переработка урановых руд с целью извлечения и использования радия в научных исследованиях и медицине. С 1942, после открытия в 1939 явления деления ядер (см. Ядра атомного деление ), У. стал основным ядерным топливом.

Распространение в природе. У. = характерный элемент для гранитного слоя и осадочной оболочки земной коры. Среднее содержание У. в земной коре (кларк) 2,5·10 -4 % по массе, в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. У. энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в форме простых и комплексных ионов, особенно в форме карбонатных комплексов. Важную роль в геохимии У. играют окислительно-восстановительные реакции, поскольку соединения У., как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (например, сероводородных).

Известно около 100 минералов У.; промышленное значение имеют 12 из них (см. Урановые руды ). В ходе геологической истории содержание У. в земной коре уменьшилось за счёт радиоактивного распада; с этим процессом связано накопление в земной коре атомов РЬ, Не. Радиоактивный распад У. играет важную роль в энергетике земной коры, являясь существенным источником глубинного тепла.

Физические свойства. У. по цвету похож на сталь, легко поддаётся обработке. Имеет три аллотропические модификации = a, b и g с температурами фазовых превращений: a b 668,8 0,4 C, b g 772,2 0,4 °C; a-форма имеет ромбическую решётку a = 2.8538 , b = 5,8662 , с = 4,9557), b-форма = тетрагональую решётку (при 720 °C а = 10,759 , b = 5,656), g-форма = объёмноцентрированную кубическую решётку (при 850 C а = 3,538). Плотность У. в a-форме (25 C) 19,05 0,2 г/см 3 , t пл 1132 1°C; t kип 3818 °C; теплопроводность (100=200 C), 28,05 вт/ (м ·К ), (200=400 C) 29,72 вт/ (м ·К ) ; удельная теплоёмкость (25 C) 27,67 кдж/(кг ·К ) ; удельное электросопротивление при комнатной температуре около 3·10 -7 ом ·см, при 600 C 5,5·10 -7 ом ·см; обладает сверхпроводимостью при 0,68 0, 02К; слабый парамагнетик, удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 .

Механические свойства У. зависят от его чистоты, от режимов механической и термической обработки. Среднее значение модуля упругости для литого У. 20,5·10 -2 Мн/м 2 предел прочности при растяжении при комнатной температуре 372=470 Мн/м 2 , прочность повышается после закалки из b- и g-фаз; средняя твёрдость по Бринеллю 19,6=21,6·10 2 Мн/м 2 .

Облучение потоком нейтронов (которое имеет место в ядерном реакторе ) изменяет физико-механические свойства У.: развивается ползучесть и повышается хрупкость, наблюдается деформация изделий, что заставляет использовать У. в ядерных реакторах в виде различных урановых сплавов.

У. = радиоактивный элемент . Ядра 235 U и 233 U делятся спонтанно, а также при захвате как медленных (тепловых), так и быстрых нейтронов с эффективным сечением деления 508·10 -24 см 2 (508 барн ) и 533·10 -24 см 2 (533 барн ) соответственно. Ядра 238 U делятся при захвате только быстрых нейтронов с энергией не менее 1 Мэв; при захвате медленных нейтронов 238 U превращается в 239 Pu, ядерные свойства которого близки к 235 U. Критич. масса У. (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара = около 50 кг, для шара с отражателем = 15 = 23 кг; критическая масса 233 U = примерно 1 / 3 критической массы 235 U.

Химические свойства. Конфигурация внешней электронной оболочки атома У. 7s 2 6d 1 5f 3 . У. относится к реакционноспособным металлам, в соединениях проявляет степени окисления + 3, + 4, + 5, + 6, иногда + 2; наиболее устойчивы соединения U (IV) и U (VI). На воздухе медленно окисляется с образованием на поверхности плёнки двуокиси, которая не предохраняет металл от дальнейшего окисления. В порошкообразном состоянии У. пирофорен и горит ярким пламенем. С кислородом образует двуокись UO 2 , трёхокись UO 3 и большое число промежуточных окислов, важнейший из которых U 3 O 8 . Эти промежуточные окислы по свойствам близки к UO 2 и UO 3 . При высоких температурах UO 2 имеет широкую область гомогенности от UO 1,60 до UO 2,27 . С фтором при 500=600 C образует тетрафторидирд (зелёные игольчатые кристаллы, малорастворимые в воде и кислотах) и гексафторид UF 6 (белое кристаллическое вещество, возгоняющееся без плавления при 56,4 C); с серой = ряд соединений, из которых наибольшее значение имеет US (ядерное горючее). При взаимодействии У. с водородом при 220 °C получается гидрид UH 3 ; с азотом при температуре от 450 до 700 °C и атмосферном давлении = нитрид U 4 N 7 , при более высоком давлении азота и той же температуре можно получить UN, U 2 N 3 и UN 2 ; с углеродом при 750=800 C = монокарбид UC, дикарбид UC 2 , а также U 2 C 3 ; с металлами образует сплавы различных типов (см. Урановые сплавы ). У. медленно реагирует с кипящей водой с образованием UO 2 и H 2 , с водяным паром = в интервале температур 150=250 °C; растворяется в соляной и азотной кислотах, слабо = в концентрированной плавиковой кислоте. Для U (VI) характерно образование иона уранила UO 2 2 + ; соли уранила окрашены в жёлтый цвет и хорошо растворимы в воде и минеральных кислотах; соли U (IV) окрашены в зелёный цвет и менее растворимы; ион уранила чрезвычайно способен к комплексообразованию в водных растворах как с неорганическими, так и с органическими веществами; наиболее важны для технологии карбонатные, сульфатные, фторидные, фосфатные и др. комплексы. Известно большое число уранатов (солей не выделенной в чистом виде урановой кислоты), состав которых меняется в зависимости от условий получения; все уранаты имеют низкую растворимость в воде.

У. и его соединения радиационно и химически токсичны. Предельно допустимая доза (ПДД) при профессиональном облучении 5 бэр в год.

Получение. У. получают из урановых руд, содержащих 0,05=0,5% U. Руды практически не обогащаются, за исключением ограниченного способа радиометрической сортировки, основанной на излучении радия, всегда сопутствующего урану. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом У. в кислый раствор в виде UO 2 SO 4 или комплексных анионов 4- , а в содовый раствор = в виде 4- . Для извлечения и концентрирования У. из растворов и пульп, а также для очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органическими растворителями (трибутилфосфат, алкилфосфорные кислоты, амины). Далее из растворов добавлением щёлочи осаждают уранаты аммония или натрия или гидроокись U (OH) 4 . Для получения соединений высокой степени чистоты технические продукты растворяют в азотной кислоте и подвергают аффинажным операциям очистки, конечными продуктами которых являются UO 3 или U 3 O 8 ; эти окислы при 650=800 C восстанавливаются водородом или диссоциированным аммиаком до UO 2 с последующим переводом его в UF 4 обработкой газообразным фтористым водородом при 500=600 C. UF 4 может быть получен также при осаждении кристаллогидрата UF 4 ·nH 2 O плавиковой кислотой из растворов с последующим обезвоживанием продукта при 450 C в токе водорода. В промышленности основным способом получения У. из UF 4 является его кальциетермическое или магниетермическое восстановление с выходом У. в виде слитков массой до 1,5 т. Слитки рафинируются в вакуумных печах.

Очень важным процессом в технологии У. является обогащение его изотопом 235 U выше естественного содержания в рудах или выделение этого изотопа в чистом виде (см. Изотопов разделение ), поскольку именно 235 U = основное ядерное горючее; осуществляется это методами газовой термодиффузии, центробежными и др. методами, основанными на различии масс 235 U и 238 U; в процессах разделения У. используется в виде летучего гексафторида UF 6 . При получении У. высокой степени обогащения или изотопов учитываются их критические массы; наиболее удобный способ в этом случае = восстановление окислов У. кальцием; образующийся при этом шлак CaO легко отделяется от У. растворением в кислотах.

Для получения порошкообразного У., двуокиси, карбидов, нитридов и др. тугоплавких соединений применяются методы порошковой металлургии.

Применение. Металлический У. или его соединения используются в основном в качестве ядерного горючего в ядерных реакторах . Природная или малообогащённая смесь изотопов У. применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения = в ядерных силовых установках или в реакторах, работающих на быстрых нейтронах. 235 U является источником ядерной энергии в ядерном оружии . 238 U служит источником вторичного ядерного горючего = плутония.

В. М. Кулифеев.

Уран в организме. В микроколичествах (10 -5 =10 -5 %) обнаруживается в тканях растений, животных и человека. В золе растений (при содержании У. в почве около·10 -4) его концентрация составляет 1,5·10 -5 %. В наибольшей степени У. накапливается некоторыми грибами и водорослями (последние активно участвуют в биогенной миграции У. по цепи вода = водные растения = рыба = человек). В организм животных и человека У. поступает с пищей и водой в желудочно-кишечный тракт, с воздухом в дыхательные пути, а также через кожные покровы и слизистые оболочки. Соединения У. всасываются в желудочно-кишечном тракте = около 1% от поступающего количества растворимых соединений и не более 0,1% труднорастворимых; в лёгких всасываются соответственно 50% и 20%. Распределяется У. в организме неравномерно. Основные депо (места отложения и накопления) = селезёнка, почки, скелет, печень и, при вдыхании труднорастворимых соединений, = лёгкие и бронхо-лёгочные лимфатические узлы. В крови У. (в виде карбонатов и комплексов с белками) длительно не циркулирует. Содержание У. в органах и тканях животных и человека не превышает 10 -7 г/г . Так, кровь крупного рогатого скота содержит 1·10 -8 г/мл, печень 8·10 -8 г/г, мышцы 4·10 -8 г/г, селезёнка 9·10 -8 г/г . Содержание У. в органах человека составляет: в печени 6·10 -9 г/г , в лёгких 6·10 -9 =9·10 -9 г/г, в селезёнке 4,7·10 -9 г/г , в крови 4·10 -9 г/мл, в почках 5,3·10 -9 (корковый слой) и 1,3·10 -9 г/г (мозговой слой), в костях 1·10 -9 г/г , в костном мозге 1·10 -9 г/г , в волосах 1,3·10 -7 г/г . У., содержащийся в костной ткани, обусловливает её постоянное облучение (период полувыведения У. из скелета около 300 сут ). Наименьшие концентрации У. = в головном мозге и сердце (10 -10 г/г ). Суточное поступление У. с пищей и жидкостями = 1,9·10 -6 г, с воздухом = 7·10 -9 г . Суточное выведение У. из организма человека составляет: с мочой 0,5·10 -7 =5·10 -7 , с калом = 1,4·10 -6 =1,8·10 -6 г, с волосами = 2·10 -8 г.

По данным Международной комиссии по радиационной защите, среднее содержание У. в организме человека 9·10 -8 г. Эта величина для различных районов может варьировать. Полагают, что У. необходим для нормальной жизнедеятельности животных и растений, однако его физиологические функции не выяснены.

Г. П. Галибин.

Токсическое действие У. обусловлено его химическими свойствами и зависит от растворимости: более токсичны уранил и др. растворимые соединения У. Отравления У. и его соединениями возможны на предприятиях по добыче и переработке уранового сырья и др. промышленных объектах, где он используется в технологическом процессе. При попадании в организм У. действует на все органы и ткани, являясь общеклеточным ядом. Признаки отравления обусловлены преим. поражением почек (появление белка и сахара в моче, последующая олигурия ), поражаются также печень и желудочно-кишечный тракт. Различают острые и хронические отравления; последние характеризуются постепенным развитием и меньшей выраженностью симптомов. При хронической интоксикации возможны нарушения кроветворения, нервной системы и др. Полагают, что молекулярный механизм действия У. связан с его способностью подавлять активность ферментов.

Профилактика отравлений: непрерывность технологических процессов, использование герметичной аппаратуры, предупреждение загрязнения воздушной среды, очистка сточных вод перед спуском их в водоёмы, мед. контроль за состоянием здоровья рабочих, за соблюдением гигиенических нормативов допустимого содержания У. и его соединений в окружающей среде.

В. Ф. Кириллов.

Лит.: Учение о радиоактивности. История и современность, под ред. Б. М. Кедрова, М., 1973; Петросьянц А. М., От научного поиска к атомной промышленности, М., 1970; Емельянов В. С., Евстюхин А. И., Металлургия ядерного горючего, М., 1964; Сокурский Ю. Н., Стерлин Я. М., Федорченко В. А., Уран и его сплавы, М., 1971; Евсеева Л. С., Перельман А. И., Иванов К. Е., Геохимия урана в зоне гнпергениза, 2 изд., М., 1974; Фармакология и токсикология урановых соединений, [пер. с англ.], т. 2, М., 1951; Гуськова В. Н., Уран. Радиационно-гигиеническая характеристика, М., 1972; Андреева О. С., Гигиена труда при работе с ураном и его соединениями, М., 1960; Новиков Ю. В, Гигиенические вопросы изучения содержания урана во внешней среде и его влияния на организм, М., 1974.

© bookwomanslife.ru, 2024
Образовательный портал - Bookwomanslife