Вычисление интеграла Мора по правилу Верещагина. Определение перемещений с помощью способа верещагина Формула трапеции сопромат

13.04.2024

Для балок и стержневых систем, состоящих из прямых стержней, внутренние усилия единичных состояний N k , M k и Q k являются линейными функциями или на всем протяжении каждого стержня, или на его отдельных участках. Внутренние усилия грузового состояния Np, М Р и Q P могут иметь произвольные законы изменения по длине стержней. Если балки и стержни имеют при этом постоянные или ступенчато-постоянные жесткости EF, EJ и GF, то вычисление интегралов в формуле Мора может быть произведено с помощью эпюр внутренних усилий.

Рассмотрим, например, эпюры изгибающих моментов М Р и М к в прямом стержне постоянной жесткости (рис. 8.31). Грузовая эпюра М Р является произвольной, а единичная эпюра М к - линейной. Начало отсчета координат поместим в точке пересечения линии эпюры М к с осью Ох. При этом изгибающий момент М к изменяется по закону М к = xtga. Вынося постоянную величину tga/ЕУв формуле (8.22) из-под знака интеграла и производя интегрирование по длине стержня, получим

Величина M P dx = dQ. P является элементом площади грузовой эпюры М р. При этом сам интеграл можно рассматривать как статический момент площади эпюры М Р относительно оси Оу, который равен

где Q. p - площадь эпюры х с - абсцисса ее центра тяжести. Учитывая, что x c tga = у с, получаем окончательный результат:

где у с - ордината в линейной эпюре М к под центром тяжести площади криволинейной эпюры М р (рис. 8.31).

Способ вычисления интегралов в формуле Мора с помощью формулы (8.23) называется правилом Верещагина или правилом «перемножения» эпюр. Согласно формуле (8.23) результат «перемножения» двух эпюр равен произведению площади нелинейной эпюры на ординату под ее центром тяжести в линейной эпюре. Если обе эпюры на рассматриваемом участке являются линейными, то при «перемножении» можно брать площадь любой из них. Результат «перемножения» однозначных эпюр является положительным, а разнозначных - отрицательным.

Результат «перемножения» двух трапеций (рис. 8.32) можно представить в виде следующей формулы:

При использовании правила Верещагина сложные эпюры надо разбить на простые фигуры, у которых известны площадь и положение центра тяжести. Чаще всего элементами разбиения являются треугольники и квадратные параболы (в случае действия равномерно распределенных нагрузок). Примеры разбиения эпюр приведены на рис. 8.33.

Однозначные или разнозначные трапеции можно разбить на два треугольника (рис. 8.33, а). Квадратная парабола с ординатами а и b в начале и конце участка разбивается на два однозначных или разнозначных треугольника и квадратную параболу с нулевыми начальным и конечным значениями (рис. 8.33, б). Ее площадь определяется по формуле

где q - интенсивность равномерно распределенной нагрузки.

Правило Верещагина нельзя применять в случае, когда обе эпюры являются нелинейными (например, для стержней с криволинейной осью), а также для стержней с переменной жесткостью EJ. В этом случае при определении перемещений методом Мора производится аналитическое или численное вычисление интегралов в формуле (8.20).

Пример 8.7. Для консольной балки постоянной жесткости EJ= const (рис. 8.34, а ) определим прогиб в сечении В и угол поворота сечения С.

Построим эпюру изгибающих моментов М Р от действия заданных нагрузок (рис. 8.34, б). Для определения искомых перемещений приложим в сечении В единичную силу Р = 1, в сечении С - единичный момент М = 1 и построим единичные эпюры М, и М 2 (рис. 8.34, в, г). Грузовую эпюру М р на втором участке разобьем на треугольник и квадратную параболу.

«Перемножим» грузовую и единичные эпюры между собой с помощью правила Верещагина. При «перемножении» эпюр М р и М х на первом участве используем формулу (8.24). В результате вычислений получим:


Направления перемещений совпадают с направлениями действия единичных нагрузок. Прогиб балки в сечении В происходит вниз, а сечение С поворачивается по ходу часовой стрелки.

Пример 8.8. Для шарнирно опертой балки постоянной жесткости (рис. 8.35, а) определим прогиб в сечении Си угол поворота сечения В.

Грузовая эпюра М р приведена на рис. 8.35, б. Приложим в сечении С единичную силу, в сечении В - единичный момент и построим единичные эпюры М х и М 2 (рис. 8.35, в, г). «Перемножив» грузовую эпюру М р с единичными эпюрами, найдем искомые перемещения:


При «перемножении» эпюр на втором участке использована формула (8.24). Сечение В

Пример 8.9. Для шарнирно опертой балки с консолью постоянной жесткости (рис. 8.36, а) определим прогиб в сечении С и угол поворота сечения D.

Определим опорные реакции от действия заданных нагрузок:

Построим грузовую эпюру М р (рис. 8.36, б). Соответствующие единичные эпюры приведены jHa рис. 8.36, в , г. «Перемножая» эпюру М Р с эпюрами М х и М 2 , найдем искомые перемещения:



Сечение С перемещается вверх, сечение D поворачивается против хода часовой стрелки.

Пример 8.10. Для балки ступенчато-постоянной жесткости с промежуточным шарниром (рис. 8.37, а) определим взаимный угол поворота и прогиб в сечении В.

Разобьем балку на несущую и несомую части (рис. 8.37, б) и определим опорные реакции для балки ЛВ

Грузовая эпюра М р и соответствующие единичные эпюры приведены на рис. 8.37, в , г, д. Отметим, что для определения взаимного угла поворота сечений в промежуточном шарнире приложен парный единичный момент (слева и справа от шарнира).

«Перемножая» эпюру М Р с единичными эпюрами и учитывая ступенчатое изменение жесткости на участках АВ и ВС, найдем:


Пример 8.11. Для консольной рамы со стержнями различной жесткости (рис. 8.38, я) определим вертикальное и горизонтальное перемещения точки С и угол поворота сечения В.

Эпюра МрОТ внешней нагрузки показана на рис. 8.38, б. Влияние продольных и поперечных сил при определении перемещений не учитываем.

Эпюры М х, М 2 и М 3 от единичных сил и момента, приложенных в сечениях С и В, показаны на рис. 8.38, в, г, д. «Перемножая» грузовую эпюру М р с единичными эпюрами в пределах длины каждого стержня, определим искомые перемещения:



Поворот сечения В происходит против хода часовой стрелки. Горизонтальное перемещение точки С равно нулю.

Пример 8.12. Для шарнирно опертой рамы со стержнями различной жесткости (рис. 8.39, а) определим вертикальное перемещение точки С и горизонтальное перемещение точки В.

Определим опорные реакции:

Грузовая и соответствующие единичные эпюры приведены на рис. 8.39, б, в, г. «Перемножив» эпюры в пределах длины каждого стержня, найдем:



В заключение приведем значения прогибов и углов поворота для консольных и шарнирно опертых балок при простых нагрузках.

В случаях, когда эпюра M z 1 (или M z ) ограничена прямыми линиями. По существу это прием графоаналитического вычисления определенного интеграла от произведения двух функций f (x ) и φ (x ), из которых одна, например φ (x ), линейная, т. е. имеет вид

Рассмотрим участок балки, в пределах которого эпюра изгибающих моментов от единичной нагрузки ограничена одной прямой линией M z 1 = kx + b , а изгибающий момент от заданной нагрузки изменяется по некоторому произвольному закону M z . Тогда в пределах этого участка

Второй интеграл представляет собой площадь ω эпюры M z на рассматриваемом участке, а первый - статический момент этой площади относительно оси y и поэтому равен произведению площадиω на координату ее центра тяжести x c . Таким образом,

.

Здесь kx c + b - ордината y c эпюры M z 1 под центром тяжести площади ω . Следовательно,

.

Произведение ω y c будет положительным, когда ω и y c расположены по одну сторону от оси эпюры, и отрицательным, если они находятся по разные стороны от этой оси.

Итак, по способу Верещагина операция интегрирования заменяется перемножением площади ω одной эпюры на ординату y c второй (обязательно линейной) эпюры, взятой под центром тяжести площади ω .

Важно всегда помнить, что такое «перемножением» эпюр возможно лишь на участке, ограниченном одной прямой той эпюры, с которой берется ордината y c . Поэтому при вычислении перемещений сечений балок способом Верещагина интеграл Мора по всей длине балки надо заменить суммой интегралов по участкам, в пределах которых эпюра моментов от единичной нагрузки не имеет изломов. Тогда

.

Для успешного применения способа Верещагина необходимо иметь формулы, по которым могут быть вычислены площади ω и координаты x c их центров тяжести. Приведенные в табл. 8.1 данные отвечают только наиболее простым случаям нагружения балки. Однако более сложные эпюры изгибающих моментов допустимо разбивать на простейшие фигуры, площади ω i , и координаты y ci которых известны, а затем находить произведение ω y c для такой сложной эпюры суммированием произведений площадей ω i ее частей на соответствующие им координаты y ci . Объясняется это тем, что разложение множимой эпюры на части равносильно представлению функции M z (x ) в интеграле (8.46) в виде суммы интегралов. В некоторых случаях упрощает расчеты построение расслоенных эпюр, т. е. от каждой из внешних сил и пар в отдельности.

Если обе эпюры M z и M z 1 линейные, конечный результат их перемножения не зависит от того, умножается ли площадь первой эпюры на ординату второй или, наоборот, площадь второй на ординату первой.

Для практического вычисления перемещений по способу Верещагина надо:

1) построить эпюру изгибающих моментов от заданной нагрузки (основная эпюра);

3) построить эпюру изгибающих моментов от единичной нагрузи (единичная эпюра);

4) разбить эпюры от заданных нагрузок на отдельные площади ω i и вычислить ординаты y Ci единичной эпюры под центрами тяжести этих площадей;

5) составить произведение ω i y Ci и просуммировать их.


Таблица 8.1.

Вид эпюры M z Площадь ω Координата центра тяжести x c
(*) - Эти формулы несправедливы для такого случая нагружения

В общем случае (стержень переменного сечения, сложная система нагрузок) интеграл Мора определяется путем численного интегрирования. Во многих практически важных случаях, когда жесткость сечения постоянна по длине стержня, интеграл Мора может быть вычислен по правилу Верещагина. Рассмотрим определение интеграла Мора на участке от а до 6 (рис. 9.18).

Рис. 9.18. Правило Верещагина для вычисления интеграла Мора

Эпюры момента от единичного силового фактора состоят из отрезков прямых. Не нарушая общности, предположим, что в пределах участка

где А и В - параметры прямой:

Интеграл Мора на рассматриваемом участке постоянного сечения имеет вид

где F - площадь под кривой (площадь эпюры изгибающих моментов от внешних сил на участке z).

где - абсцисса центра тяжести площади .

Равенство (109) справедливо, когда в пределах участка не изменяет знак и может рассматриваться как элемент площади эпюры. Теперь из соотношений (107) -(109) получаем

Момент от единичной нагрузки в сечении

Вспомогательная таблица для использования правила Верещагина дана на рис. 9.19.

Замечания. 1. Если эпюра от действия внешних сил на участке линейна (например, при действии сосредоточенных сил и моментов), то правило можно применять в обращенном виде: площадь эпюры от единичного силового фактора умножить на ординату эпюры соответствующую центру тяжести площади . Это вытекает из приведенного доказательства.

2. Правило Верещагина может быть распространено на интеграл Мора в общем виде (уравнение (103)).

Рис. 9.19. Площади и положение центров тяжести эпюр моментов

Рис. 9.20. Примеры определения прогиба и углов поворота по правилу Верещагина

Основное требование при этом состоит в следующем: в пределах участка внутренние силовые факторы от единичной нагрузки должны быть линейными функциями вдоль оси стержня (линейность эпюр!).

Примеры. 1. Определить прогиб в точке А консольного стержня при действии сосредоточенного момента М (рис. 9.20, а).

Прогиб в точке А определяем по формуле (для краткости индекс опускается)

Знак минус связан с тем, что имеют разные знаки.

2. Определить прогиб в точке А в консольном стержне под действием распределенной нагрузки.

Прогиб определяем по формуле

Эпюры изгибающего момента М и перерезывающей силы Q от внешней нагрузки показаны на рис. 9.20, б, ниже на этом рисунке приведены эпюры при действии единичной силы. Далее находим

3. Определить прогиб в точке А и угол поворота в точке В для двухопорной балки, загруженной сосредоточенным моментом (рис. 9.20.).

Прогиб определяем по формуле (деформацией сдвига пренебрегаем)

Так как эпюра момента от единичной силы не изображается одной линией; то интеграл разбиваем на два участка:

Угол поворота в точке В равен

Замечание. Из приведенных примеров видно, что способ Верещагина в простых случаях позволяет быстро определить прогибы и углы поворота. Важно только применять единое правило знаков для Если условиться при изгибе стержня строить эпюры изгибающих моментов на «растянутом волокне» (см. рис. 9.20), то сразу легко видеть положительные и отрицательные значения моментов.

Особое преимущество правила Верещагина состоит в том, что оно может быть исполъвовано не только для стержней, но и для рам (разд. 17).

Ограничения для применения правила Верещагина.

Эти ограничения вытекают из вывода формулы (110), но обратим на них внимание еще раз.

1. Эпюра изгибающего момента от единичной нагрузки должна быть в виде одной прямой линии. На рис. 9.21, а показан случай, когда это условие не соблюдается. Интеграл Мора необходимо вычислять отдельно для участков I и II.

2. Изгибающий момент от внешней нагрузки в пределах участка должен иметь один знак. На рис. 9.21, б показан случай, когда правило Верещагина следует применять для каждого участка в отдельности. Это ограничение не относится к моменту от единичной нагрузки.

Рис. 9.21. Ограничения при использовании правила Верещагина: а - эпюра шсеет излом; б - эпюра имеет разные знаки; в - стержень имеет разные сечения

3. Жесткость стержня в пределах участка должна быть постоянна, иначе интегрирование следует распространять отдельно на участки с постоянной жесткостью. Ограничения по постоянной жесткости можно избежать, если строить эпюры .

Кроме рассмотренного выше аналитического метода определения перемещения балки, существуют другие аналитические и графоаналитические методы, применимые для более сложных систем, например, конструкций с ломаной осью и статически неопределимых систем.

Один из таких методов основан на интеграле Мора и правиле Верещагина. Сущность метода заключается в приложении в направлении интересующего нас перемещения единичной нагрузки (силы или момента силы) и вычислении интеграла Мора. Выражение для интеграла Мора выводится на основе теоремы Кастильяно, которая формулируется здесь без доказательства.

Теорема Кастильяно. Производная потенциальной энергии деформации по обобщенной силе рана обобщенному перемещению.

Потенциальная энергия деформации изогнутой балки выражается формулой

На основании теоремы Кастильяно обобщенное (линейное или угловое) перемещение Д определяется, как

Если обобщенную силу Q 06 приравнять к единице, то частная производная будет численно равна моменту М° единичной нагрузки

в сечении г балки (частные производные моментов других сил равны нулю, так как эти моменты от единичной нагрузки не зависят). В результате получается формула, называемая интегралом Мора.

Для отдельного участка конструкции интеграл Мора записывается в виде

где Д - обобщенное (линейное или угловое) перемещение; / - длина участка; М - уравнение моментов внешних сил; М° - уравнение моментов единичной нагрузки; ?7 - жесткость участка конструкции.

Для определения линейного перемещения к участку прикладывается единичная безразмерная сила, а для определения углового перемещения - единичный безразмерный момент. Для конструкции с постоянной жесткостью ее можно вынести за знак интеграла, тогда

В качестве примера вычислим интеграл Мора для балки, показанной на рис. 6.27

Рис. 6.27

Так как функции изгибающих моментов графически выражаются эпюрами моментов, то представляется возможным выразить интеграл Мора через площади и ординаты эпюр по правилу Верещагина , иначе называемому методом перемножения эпюр. Это правило формулируется так: искомый интеграл равен произведению площади грузовой эпюры М на расположенную под ее центром тяжести ординату единичной эпюры. Грузовой названа эпюра изгибающих моментов внешних сил.

Площади и ординаты эпюр берутся со знаками плюс или минус, а положительный результат означает, что направление искомого перемещения совпадает с направлением единичной нагрузки. Если рассматриваемая конструкция имеет несколько участков, то расчеты проводятся для каждого участка в отдельности, а результат суммируется.

В качестве примера определим по правилу Верещагина линейное перемещение и угол поворота концевого сечения балки, изображенной на рис. 6.24.

Для определения линейного перемещения свободного конца балки приложим к ее концу вертикальную единичную силу и рассмотрим грузовую эпюру и эпюру моментов единичной силы. Тогда

что совпадает с выражением для у в, полученным в Примере 6.8.

Для определения угла поворота концевого сечения балки приложим к ее концу единичный момент и построим эпюру. Тогда

Положительные ответы означают, что направления единичных нагрузок и перемещений совпадают. Тот же результат мы получим, если перемножим площадь единичной эпюры на ординату грузовой эпюры, расположенную над центром тяжести площади единичной эпюры.

Для раскрытия статической неопределимости системы следует отбросить одну из опор, заменить ее реакциями, приложить единичную нагрузку, а затем построить грузовую и единичную эпюры. Перемножив эпюры по правилу Верещагина и приравняв полученное перемещение к нулю, получим дополнительное уравнение, необходимое для раскрытия статической неопределимости системы.

Пример 6.11

Раскрыть статическую неопределимость двухопорной рамы квадратной формы со стороной /, показанной на рис. 6.28, а.

Решение. Отбросим опоры, заменив их реакциями Х ь Y u Х 2 , Y 2 . Составив уравнение моментов относительно опор и решая их, получим Y 2 -P , Y x = -Р . Уравнение проекции на горизонтальную ось Р-Х х +Х 2 = 0 имеет два неизвестных. Приложим к правому концу рамы единичную силу, как показано на рис. 6.28, д и построим эпюру единичных моментов. На рис. 6.28, виг построены грузовые эпюры изгибающих моментов. Перемножив по правилу

Рис. 6.28

Верещагина грузовые и единичную эпюры, получим дополнительное уравнение, необходимое для раскрытия статической неопределимости рамы.

Знак минус в третьем слагаемом возникает потому, что эпюры активной силы Р и единичной силы расположены по разные стороны от оси стержня.

Произведя вычисления, получим , откуда. Минус в ответе означает то, что реакция Х 2 направлена в противоположную сторону. Далее находим

УО «БГУИР»

кафедра инженерной графики

РЕФЕРАТ

на тему:

«ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ МЕТОДОМ МОРА. ПРАВИЛО ВЕРЕЩАГИНА»

МИНСК, 2008


Рассмотрим теперь общий метод определения перемещений, пригодный для любой, линейно деформируемой системы при любой нагрузке. Этот метод предложен выдающимся немецким ученым О. Мором.

Пусть, например, требуется определить вертикальное перемещение точки А балки, представленной на рис. 7.13, а. Заданное (грузовое) состояние обозначим буквой к. Выберем вспомогательное состояние той же балки с единичной

силой, действующей в точке A и в направлении искомого перемещения. Вспомогательное состояние обозначим буквой i(рис. 7.13,6).

Вычислим работу внешних и внутренних сил вспомогательного состояния на перемещениях, вызванных действием сил грузового состояния.

Работа внешних сил будет равна произведению единичной силы на искомое перемещение ya

а работа внутренних сил по абсолютной величине равна интегралу

(1)

Формула (7.33) и есть формула Мора (интеграл Мора), которая дает возможность определить перемещение в любой точке линейно-деформируемой системы.

В этой формуле подынтегральное произведение MiMkположительно, если оба изгибающих момента имеют одинаковый знак, и отрицательно, если Miи Мк имеют разные знаки.

Если бы мы определяли угловое перемещение в точке А, то в состоянии iследовало бы приложить в точке А момент, равный единице (без размерности).

Обозначая буквой Δ любое перемещение (линейное или угловое), формулу (интеграл) Мора напишем в виде

(2)

В общем случае аналитическое выражение Miи Мк может быть различным на разных участках балки или вообще упругой системы. Поэтому вместо формулы (2) следует пользоваться более общей формулой

(3)

Если стержни системы работают не на изгиб, а на растяжение (сжатие), как, например, в фермах, то формула Мора имеет вид

(4)

В этой формуле произведение NiNKположительно, если оба усилия растягивающие или оба сжимающие. Если стержни одновременно работают и на изгиб и на растяжение (сжатие), то в обычных случаях, как показывают сравнительные расчеты, перемещения можно определять, учитывая лишь изгибающие моменты, так как влияние продольных сил весьма мало.

По тем же соображениям, как отмечалось ранее, в обычных случаях можно не учитывать влияния поперечных сил.

Вместо непосредственного вычисления интеграла Мора можно пользоваться графо-аналитическим приемом «способом перемножения эпюр», или правилом Верещагина.

Рассмотрим две эпюры изгибающих моментов, из которых одна Мк имеет произвольное очертание, а другая Мi прямолинейна (Рис 7.14, а и б).

(5)

Величина MKdzпредставляет собой элементарную площадь dωk эпюры Мк (заштрихована на рисунке). Таким образом,

(6)

следовательно,

(8)

Но представляет собой статический момент площади эпюры Мк относительно некоторой оси у, проходящей через точку О, равный ωkzc, где ωk - площадь эпюры моментов; zс - расстояние от оси у до центра тяжести эпюры Мк. Из чертежа видно, что

где Мсi - ордината эпюры Mi, расположенная под центром тяжести эпюры Мк (под точкой С). Следовательно,

(10)

т. е. искомый интеграл равен произведению площади эпюры Мк (любой по очертанию) на расположенную под ее центром тяжести ординату прямолинейной эпюры Мсi. Значение величины ωкМсi считается положительным, если обе эпюры располагаются по одну сторону стержня, и отрицательным, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента).

Необходимо помнить, что ордината Мсiберется обязательно в прямолинейной эпюре. В том частном случае, когда обе эпюры прямолинейные, можно умножить площадь любой из них на соответствующую ординату другой.

Для стержней переменного сечения правило Верещагина перемножения эпюр неприменимо, так как в этом случае уже нельзя выносить величину EJиз-под знака интеграла. В этом случае следует выразить EJкак функцию абсциссы сечения и затем уже вычислять интеграл Мора (1).

При ступенчатом изменении жесткости стержня интегрирование (или перемножение эпюр) производят для каждого участка отдельно (со своим значением EJ) и затем суммируют результаты.

В табл. 1 приведены значения площадей некоторых простейших эпюр и координат их центра тяжести.

Таблица 1

Вид эпюры Площадь эпюры Расстояние до центра тяжести

Для ускорения вычислений можно использовать готовые таблицы перемножения эпюр (табл.2).

В этой таблице, в клетках на пересечении соответствующих элементарных эпюр, приведены результаты перемножения этих эпюр.

При разбивке сложной эпюры на элементарные, представленные в табл. 1 и 7.2, следует иметь в виду, что параболические эпюры получены от действия только одной распределенной нагрузки.

В тех случаях, когда в сложной эпюре криволинейные участки получаются от одновременного действия сосредоточенных моментов, сил и равномерно распределенной нагрузки, во избежание ошибки следует сложную эпюру предварительно «расслоить», т. е. разбить ее на ряд самостоятельных эпюр: от действия сосредоточенных моментов, сил и от действия равномерно распределенной нагрузки.

Можно также применить другой прием, не требующий расслоения эпюр, а требующий лишь выделения криволинейной части эпюры по хорде, соединяющей крайние ее точки.

Покажем оба способа на конкретном примере.

Пусть, например, требуется определить вертикальное перемещение левого конца балки (рис. 7.15).

Суммарная эпюра от нагрузки представлена на рис. 7.15, а.


Таблица 7.2

Эпюра от действия единичной силы в точке А представлена на рис. 7.15, г.

Для определения вертикального перемещения в точке А необходимо перемножить эпюру от нагрузки на эпюру от единичной силы. Однако замечаем, что на участке ВС суммарной эпюры криволинейная эпюра получена не только от действия равномерно распределенной нагрузки, но также и от действия сосредоточенной силы Р. В результате на участке ВС уже будет не элементарная параболическая эпюра, приведенная в таблицах 7.1 и 7.2, а по существу сложная эпюра, для которой данные этих таблиц недействительны.

Поэтому необходимо произвести расслоение сложной эпюры по рис. 7.15, а на элементарные эпюры, представленные на рис. 7.15, б и 7.15, в.

Эпюра по рис. 7.15, б получена только от сосредоточенной силы, эпюра по рис. 7.15, в - только от действия равномерно распределенной нагрузки.

Теперь можно перемножить эпюры, используя табл. 1 или 2.

Для этого необходимо перемножить треугольную эпюру по рис. 7.15, б на треугольную эпюру по рис. 7.15, г и добавить к этому результат перемножения параболической эпюры на рис. 7.15, в на трапециевидную эпюру участка ВС по рис. 7.15, г, так как на участке АВ ординаты эпюры по рис. 7.15, в равны нулю.

Покажем теперь второй способ перемножения эпюр. Рассмотрим снова эпюру по рис. 7.15, а. Примем начало отсчета в сечении В. Покажем, что в пределах кривой LMNизгибающие моменты могут быть получены как алгебраическая сумма изгибающих моментов, соответствующих прямой LN, и изгибающих моментов параболической эпюры LNML, такой же, как и для простой балки длиной а, загруженной равномерно распределенной нагрузкой q:

Наибольшая ордината посредине будет равна .

Для доказательства напишем фактическое выражение изгибающего момента в сечении на расстоянии zот точки В

(А)

Напишем теперь выражение изгибающего момента в том же сечении, полученное как алгебраическая сумма ординат прямой LNи параболы LNML.

Уравнение прямой LN

где k- тангенс угла наклона этой прямой

Следовательно, уравнение изгибающих моментов, полученное как алгебраическая сумма уравнения прямой LNи параболы LNMNимеет вид

что совпадает с выражением (А).

При перемножении эпюр по правилу Верещагина следует перемножить трапецию BLNCна трапецию из единичной эпюры на участке ВС (см. рис. 7.15, г) и вычесть результат перемножения параболической эпюры LNML(площадью ) на ту же трапецию из единичной эпюры. Такой способ расслоения эпюр особенно выгоден, когда криволинейный участок эпюры находится на одном из средних участков балки.

Пример 7.7. Определить вертикальное и угловое перемещения консольной балки в месте приложения нагрузки (рис. 7.16).

Решение. Строим эпюру изгибающих моментов для грузового состояния (рис. 7.16, а).

Для определения вертикального перемещения выбираем вспомогательное состояние балки с единичной силой в точке приложения нагрузки.

Строим эпюру изгибающих моментов от этой силы (рис. 7.16, б). Определяем вертикальное перемещение по способу Мора

Значение изгибающего момента от нагрузки

Значение изгибающего момента от единичной силы

Подставляем эти значения МР и Miпод знак интеграла и интегрируем

Этот же результат был ранее получен другим способом.

Положительное значение прогиба показывает, что точка приложения нагрузки Р перемещается вниз (в направлении единичной силы). Если бы мы единичную силу направили снизу вверх, то имели бы Mi = 1zи в результате интегрирования получили бы прогиб со знаком минус. Знак минус показывал бы, что перемещение происходит не вверх, а вниз, как это и есть в действительности.

Вычислим теперь интеграл Мора путем перемножения эпюр по правилу Верещагина.

Так как обе эпюры прямолинейны, то безразлично, из какой эпюры брать площадь и из какой - ординату.

Площадьгрузовой эпюры равна

Центр тяжести этой эпюры расположен на расстоянии 1/3l от заделки. Определяем ординату эпюры моментов от единичной силы, расположенную под

центром тяжести грузовой эпюры. Легко убедиться, что она равна 1/3l.

Следовательно.

Тот же результат получается и по таблице интегралов. Результат перемножения эпюр положителен, так как обе эпюры располагаются снизу стержня. Следовательно, точка приложения нагрузки смещается вниз, т. е. по принятому направлению единичной силы.

Для определения углового перемещения (угла поворота) выбираем вспомогательное состояние балки, в котором на конце балки действует сосредоточенный момент, равный единице.

Строим эпюру изгибающих моментов для этого случая (рис. 7.16, в). Определяем угловое перемещение, перемножая эпюры. Площадь грузовой эпюры

Ординаты эпюры от единичного момента везде равны единице., Следовательно, искомый угол поворота сечения равен

Так как обе эпюры расположены снизу, то результат перемножения эпюр положителен. Таким образом, концевое сечение балки поворачивается по часовой стрелке (по направлению единичного момента).

Пример: Определить по способу Мора - Верещагина прогиб в точке Dдля балки, изображенной на рис. 7.17..

Решение. Строим расслоенную эпюру моментов от нагрузки, т. е. строим отдельные эпюры от действия каждой нагрузки. При этом для удобства перемножения эпюр целесообразно строить расслоенные (элементарные) эпюры относительно сечения, прогиб которого определяется в данном случае относительно сечения D.

На рис. 7.17, а представлена эпюра изгибающих моментов от реакции А (участок AD) и от нагрузки Р = 4 Т (участок DC). Эпюры строятся на сжатом волокне.

На рис. 7.17, б представлены эпюры моментов от реакции В (участок BD), от левой равномерно распределенной нагрузки (участок AD) и от равномерно распределенной нагрузки, действующей на участке ВС. Эта эпюра изображена на рис. 7.17, б на участке DCснизу.

Далее выбираем вспомогательное состояние балки, для чего в точке D, где определяется прогиб, прикладываем единичную силу (рис. 7.17, в). Эпюра моментов от единичной силы изображена на рис. 7.17, г.Теперь перемножим эпюры с 1 по 7 на эпюры 8 и 9, пользуясь таблицами перемножения эпюр, с учетом знаков.

При этом эпюры, расположенные с одной стороны балки, перемножаются со знаком плюс, а эпюры, расположенные по разные стороны балки, перемножаются со знаком минус.

При перемножении эпюры 1 и эпюры 8 получим

Перемножая эпюру 5 на эпюру 8, получим

Перемножение эпюр 2 и 9 дает

Перемножаем эпюры 4 и 9

Перемножаемэпюры 6 и 9

Суммируя результаты перемножения эпюр, получим

Знак минус показывает, что точка Dперемещается не вниз, как направлена единичная сила, а вверх.

Этот же результат был получен ранее по универсальному уравнению.

Конечно, в данном примере можно было расслоить эпюру только на участке AD, так как на участке DBсуммарная эпюра прямолинейная и ее незачем расслаивать. На участке ВС расслоения не требуется, так как от единичной силы на этом участке эпюра равна нулю. Расслоение эпюры на участке ВС необходимо для определения прогиба в точке С.

Пример. Определить вертикальное, горизонтальное и угловое перемещения сечения А ломаного стержня, представленного на рис. 7.18, а. Жесткость сечения вертикального участка стержня - EJ1 жесткость сечения горизонтального участка - EJ2.

Решение. Строим эпюру изгибающих моментов от нагрузки. Она представлена на рис. 7.18, б (см. пример 6.9). Для определения вертикального перемещения сечения А выбираем вспомогательное состояние системы, представленное на рис. 7.18, в. В точке А приложена единичная вертикальная сила, направленная вниз.

Эпюра изгибающих моментов для этого состояния представлена на рис. 7.18, в.

Определяем вертикальное перемещение по методу Мора, используя способ перемножения эпюр. Так как на вертикальном стержне во вспомогательном состоянии эпюра М1 отсутствует, то перемножаем только эпюры, относящиеся к горизонтальному стержню. Площадь эпюры берем из грузового состояния, а ординату - из вспомогательного. Вертикальное перемещение равно

Так как обе эпюры расположены снизу, то результат перемножения берем со знаком плюс. Следовательно, точка А перемещается вниз, т. е. так, как направлена единичная вертикальная сила.

Для определения горизонтального перемещения точки А выбираем вспомогательное состояние с горизонтальной единичной силой, направленной влево (рис. 7.18, г). Эпюра моментов для этого случая представлена там же.

Перемножаем эпюры МPи М2 и получаем

Результат перемножения эпюр положителен, так как перемножаемые эпюры располагаются на одной и той же стороне стержней.

Для определения углового перемещения выбираем вспомогательное состояние системы по рис. 7.18,5 и строим эпюру изгибающих моментов для этого состояния (на том же рисунке). Перемножаем эпюры МР и М3:

Результат перемножения положителен, так как перемножаемые эпюры располагаются с одной стороны.

Следовательно, сечение Aповорачивается по часовой стрелке

Те же результаты получились бы и при использовании таблиц
перемножения эпюр.

Вид деформированного стержня показан на рис. 7.18, е, при этом перемещения сильно увеличены.


ЛИТЕРАТУРА

Феодосьев В.И. Сопротивление материалов. 1986

Беляев Н.М. Сопротивление материалов. 1976

Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем. 1991

Работнов Ю.Н. Механика деформируемого твердого тела. 1988

Степин П.А. Сопротивление материалов. 1990

© bookwomanslife.ru, 2024
Образовательный портал - Bookwomanslife