Тригонометрия. Тригонометрия с нуля: основные понятия, история Тригонометрические функции для чайников

30.07.2023

На этом уроке мы познакомимся с определениями тригонометрических функций и их основными свойствами , узнаем, как работать с тригонометрической окружностью , выясним, что такое период функции и вспомним о различных способах измерения углов . Кроме этого, разберемся с применением формул приведения .

Данный урок поможет Вам подготовиться к одному из типов задания В7 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 7. Введение в тригонометрию.

Теория

Конспект урока

Сегодня мы с вами начинаем раздел, который имеет пугающее для многих название «Тригонометрия». Давайте сразу выясним, что это не отдельный предмет, похожий по названию на геометрию, как некоторые думают. Хотя в переводе с греческого слово «тригонометрия» означает «измерение треугольников» и имеет прямое отношение к геометрии. Кроме этого тригонометрические вычисления широко применяются в физике и технике. Но начнем мы с вами именно с рассмотрения того, как основные тригонометрические функции вводятся в геометрии с помощью прямоугольного треугольника.

Только что мы использовали термин «тригонометрическая функция» ‑ это означает, что мы введем целый класс определенных законов соответствия одной переменной величины от другой.

Для этого рассмотрим прямоугольный треугольник, в котором для удобства используются стандартные обозначения сторон и углов, которые вы можете видеть на рисунке:

Рассмотрим, например, угол и введем для него следующие действия:

Отношение противолежащего катета к гипотенузе назовем синусом, т.е.

Отношение прилежащего катета к гипотенузе назовем косинусом, т.е. ;

Отношение противолежащего катета к прилежащему назовем тангенсом, т.е. ;

Отношение прилежащего катета к противолежащему назовем котангенсом, т.е. .

Все эти действия с углом называют тригонометрическими функциями . Сам угол, при этом, принято называть аргументом тригонометрической функции и его можно обозначать, например, иксом, как это обыкновенно принято в алгебре.

Важно сразу понять, что тригонометрические функции зависят именно от угла в прямоугольном треугольнике, а не от его сторон. Это легко доказать, если рассмотреть треугольник, подобный данному, в нем длины сторон будут другими, а все углы и отношения сторон не изменятся, т.е. останутся неизменными и тригонометрические функции углов.

После такого определения тригонометрических функций может возникнуть вопрос: «А существует ли например ? Ведь угла в прямоугольном треугольнике быть не может » . Как ни странно, но ответ на этот вопрос утвердительный, причем, значение этого выражения равно , а это еще больше удивляет, поскольку все тригонометрические функции являются отношением сторон прямоугольного треугольника, а длины сторон являются положительными числами.

Но никакого парадокса в этом нет. Дело в том, что, например, в физике при описании некоторых процессов необходимо использовать тригонометрические функции углов не только больших , но и больших и даже . Для этого необходимо ввести более обобщенное правило вычисления тригонометрических функций с помощью так называемой «единичной тригонометрической окружности» .

Она представляет собой окружность с единичным радиусом, изображенную так, что ее центр находится в начале координат декартовой плоскости.

Для изображения углов в этой окружности необходимо договориться, откуда их откладывать. Принято за луч отсчета углов принимать положительное направление оси абсцисс, т.е. оси иксов . Направлением отложения углов принято считать направление против часовой стрелки. Исходя из этих договоренностей, отложим сначала острый угол . Именно для таких острых углов мы уже умеем вычислять значения тригонометрических функций в прямоугольном треугольнике. Оказывается, что с помощью изображенной окружности также можно вычислять тригонометрические функции, только более удобно.

Значения синуса и косинуса острого угла являются координатами точки пересечения стороны этого угла с единичной окружностью:

Это можно записывать в таком виде:

:

Исходя из того факта, что координаты по оси абсцисс показывают значение косинуса, а координаты по оси ординат значения синуса угла , названия осей в системе координат с единичной окружностью удобно переименовать так, как вы видите на рисунке:

Ось абсцисс переименовывается в ось косинусов, а ось ординат в ось синусов.

Указанное правило определения синуса и косинуса обобщается и на тупые углы, и на углы, лежащие в диапазоне от до . В таком случае синусы и косинусы могут принимать, как положительные, так и отрицательные значения. Различные знаки значений этих тригонометрических функций в зависимости от того, в какую четверть попадает рассматриваемый угол, принято изображать следующим образом:

Как видите, знаки тригонометрических функций определяются положительными и отрицательными направлениями соответствующих им осей.

Кроме того, стоит обратить внимание на то, что поскольку наибольшая координата точки на единичной окружности и по оси абсцисс и по оси ординат равна единице, а наименьшая минус единице, то и значения синуса и косинуса ограничены этими числами:

Эти записи еще принято записывать в таком виде:

Для того чтобы ввести функции тангенса и котангенса на тригонометрической окружности, необходимо изобразить дополнительные элементы: касательную к окружности в точке A - по ней определяется значение тангенса угла , и касательную к в точке B - по ней определяется значение котангенса угла .

Однако мы не будем углубляться в определение тангенсов и котангенсов по тригонометрической окружности, т.к. их легко можно вычислить, зная значения синуса и косинуса данного угла, что мы уже умеем делать. Если вам интересно ознакомиться с вычислением тангенса и котангенса по тригонометрической окружности, повторите программу курса алгебры 10 класса.

Укажем только изображение на окружности знаков тангенсов и котангенсов в зависимости от угла:

Отметим, что аналогично диапазонам значений синуса и косинуса можно указать диапазоны значений тангенса и котангенса. Исходя из их определения на тригонометрической окружности, значения этих функций не ограничены :

Что можно записать еще так:

Кроме углов в диапазоне от до тригонометрическая окружность позволяет работать и с углами, которые больше и даже с отрицательными углами. Такие значения углов хоть и кажутся бессмысленными для геометрии, но используются для описания некоторых физических процессов. Например, что вы ответите на вопрос: «На какой угол повернется стрелка часов за сутки?» За такое время она выполнит два полных оборота, а за один оборот пройдет , т.е. за сутки повернется на . Как видите, такие значения имеют вполне практический смысл. Знаки углов используются для обозначения направления вращения - одно из направлений договариваются измерять положительными углами, а другое отрицательными. Как же это учитывать в тригонометрической окружности?

На окружности с такими углами работают следующим образом:

1) Углы, которые больше , откладываются против часовой стрелки с прохождением начала отсчета столько раз, сколько это нужно. Например, для построения угла необходимо пройти два полных оборота и еще . Для окончательного положения и вычисляются все тригонометрические функции. Несложно увидеть, что значение всех тригонометрических функций для и для будут одинаковыми.

2) Отрицательные углы откладываются точно по тому же принципу, что и положительные, только по часовой стрелке.

Уже по способу построения больших углов можно сделать вывод, что значения синусов и косинусов углов, которые отличаются на , одинаковы. Если проанализировать значения тангенсов и котангенсов, то они будут одинаковы для углов, отличающихся на .

Такие минимальные ненулевые числа, при добавлении которых к аргументу, не меняется значение функции, называют периодом этой функции.

Таким образом, период синуса и косинуса равен , а тангенса и котангенса . А это означает, что сколько не добавляй или отнимай эти периоды от рассматриваемых углов, значения тригонометрических функций не изменятся.

Например , , а и т.д.

Позже мы еще вернемся к более подробному объяснению и применению этого свойства тригонометрических функций.

Между тригонометрическими функциями одного и того же аргумента существуют определенные соотношения, которые очень часто используются и называются основные тригонометрические тождества.

Они выглядят следующим образом:

1) , так называемая «тригонометрическая единица»

3)

4)

5)

Заметим, что, например, обозначение обозначает, что вся тригонометрическая функция возводится в квадрат. Т.е. это можно представить в такой форме: . Важно понимать, что это не равно такой записи как , в этом случае возводится в квадрат только аргумент, а не вся функция, к тому же выражения такого вида встречаются крайне редко.

Из первого тождества есть два очень полезных следствия, которые могут пригодиться при решении многих типов заданий. После несложных преобразований можно выразить синус через косинус того же угла и наоборот:

Два возможных знака выражений появляются, т.к. извлечение арифметического квадратного корня дает только неотрицательные значения, а синус и косинус, как мы уже видели, могут иметь и отрицательные значения. Причем знаки этих функций удобнее всего определять именно с помощью тригонометрической окружности в зависимости от того, какие углы в них присутствуют.

Теперь давайте вспомним о том, что измерение углов можно осуществлять двумя способами: в градусах и в радианах. Укажем определения одного градуса и одного радиана.

Один градус - это угол, образованный двумя радиусами, которые стягивают дугу равную окружности.

Один радиан - это угол, образованный двумя радиусами, которые стягивает дуга равная по длине радиусам.

Т.е. это просто два различных способа измерять углы, которые абсолютно равноправны. В описании физических процессов, которые характеризуются тригонометрическими функциями, принято использовать радианную меру углов, поэтому нам тоже придется к ней привыкать.

Измерять углы в радианах принято долями числа «пи», например, или . При этом значение числа «пи», которое равно 3,14, можно подставлять, но это делается редко.

Для перевода градусной меры углов в радианную пользуются тем фактом, что угол , из чего легко получить общую формулу перевода:

Например, переведем в радианы: .

Существует и обратная формула перевода из радиан в градусы :

Например, переведем в градусы: .

Использовать радианную меру угла в этой теме мы будем достаточно часто.

Теперь самое время вспомнить, какие конкретно значения могут давать тригонометрические функции различных углов. Для некоторых углов, кратных , существует таблица значений тригонометрических функций . В ней для удобства приведены углы в градусной и радианной мерах.

Эти углы часто встречаются во многих задачах и в указанной таблице желательно уметь уверенно ориентироваться. Значения тангенса и котангенса некоторых углов не имеют смысла, что указано в таблице в виде прочерков. Подумайте сами почему так или ознакомьтесь с этим более подробно во вставке к уроку.

Последнее, с чем нам надо ознакомиться в нашем первом уроке по тригонометрии, это преобразование тригонометрических функций по так называемым формулам приведения.

Оказывается, что есть определенный вид выражений для тригонометрических функций, который достаточно часто встречается и удобно упрощается. Например, это такие выражения: и т.п.

Т.е. речь пойдет о функциях, у которых в качестве аргумента выступает произвольный угол, измененный на целую или половинную часть . Такие функции упрощаются до аргумента, который равен произвольному углу добавления или вычитания частей . Например, , а . Как видим результатом может стать противоположная функция, и функция может поменять знак.

Поэтому правила преобразования таких функций можно разбить на два этапа. Во-первых, необходимо определить какая функция получится после преобразования:

1) Если произвольный аргумент изменен на целое число , то функция не изменяется. Это верно для функций типа , где любое целое число;

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

- -
Обычно, когда хотят кого-то напугать СТРАШНОЙ МАТЕМАТИКОЙ в пример приводят всякие синусы и косинусы, как нечто очень сложное и гадкое. Но на самом деле - это красивый и интересный раздел, который можно понимать и решать.
Тему начинают проходить в 9 классе и не всегда всё ясно с первого раза, много тонкостей и хитростей. Я попытался рассказать что-то по теме.

Введение в мир тригонометрии:
Прежде чем кидаться с головой в формулы, нужно понять из геометрии, что такое синус, косинус и тд.
Синус угла - отношение противолежащей (углу) стороны к гипотенузе.
Косинус - отношение прилежащей к гипотенузе.
Тангенс - противолежащей стороны в прилежащей стороне
Котангенс - прилежащей к противолежащей.

Теперь рассмотрим окружность единичного радиуса на координатной плоскости и отметим на нем какой-то угол альфа: (картинки кликабельны, по крайней мере некоторые)
-
-
Тонкие красные линии - перпендикуляр из точки пересечения окружности и прямой угла на оси ох и оу. Красные х и у - значение координаты х и у на осях (серые х и у просто для того, чтобы указать, что это оси координат, а не просто линии).
Надо отметить, что углы считаются от положительного направления оси ох против часовой стрелки.
Найдем для него синус, косинус и тд.
sin a: противолежащая сторона равна у, гипотенуза равна 1.
sin a = y / 1 = y
Чтобы было совсем понятно, откуда я беру у и 1, для наглядности расставим буквы и рассмотрим треугольники.
- -
AF = AE = 1 - радиус окружности.
Следовательно и AB = 1, как радиус. AB - гипотенуза.
BD = CA = y - как значение по оу.
AD = CB = x - как значение по ох.
sin a = BD / AB = y / 1 = y
Далее косинус:
cos a: прилежащая сторона - AD = х
cos a = AD / AB = x / 1 = x

Так же выводим тангенс и котангенс .
tg a = y / x = sin a / cos a
ctg a = x / y = cos a / sin a
Уже внезапно мы вывели формулу тангенса и котангенса.

Ну давайте с конкретными углами рассмотрим как решается.
Например, а = 45 градусов.
Получаем прямоугольный треугольник в одним углом 45 градусов. Кому-то сразу ясно, что это разнобедренный треугольник, но всё равно распишу.
Найдем третий угол треугольника (первый 90, второй 5): b = 180 - 90 - 45 = 45
Если два угла равны, то и стороны при них равны, вроде так это звучало.
Итак, получается как будто, если сложить два таких треугольника друг на друга, мы получим квадрат с диагональю равной радиусу = 1. По теореме пифагора мы знаем, что диагональ квадрата со стороной а равна а корней из двух.
Теперь думаем. Если 1 (гипотенуза ака диагональ) равна стороне квадрата умноженной на корень из двух, тогда сторона квадрата должна быть равна 1/sqrt(2), а если домножить числитель и знаменатель этой дроби на корень из двух, то получим sqrt(2)/2. А так как треугольник равнобедренный, то AD = AC => x = y
Находим наши тригонометрические функции:
sin 45 = sqrt(2)/2 / 1 = sqrt(2)/2
cos 45 = sqrt(2)/2 / 1 = sqrt(2)/2
tg 45 = sqrt(2)/2 / sqrt(2)/2 = 1
ctg 45 = sqrt(2)/2 / sqrt(2)/2 = 1
С остальными значениями углов работать надо так же. Только треугольники будут не равнобедренные, но стороны находятся так же легко по теореме Пифагора.
Таким макаром мы получаем таблицу значений тригонометрических функций от разных углов:
-
-
Притом эта таблица читерская и очень удобная.
Как ее составить самому без лишних хлопот: рисуешь такую таблицу и пишешь в клеточках цифры 1 2 3.
-
-
Теперь из этих 1 2 3 извлекаешь корень и делишь на 2. Получается вот так:
-
-
Теперь отчеркиваем синус и пишем косинус. Его значения - зеркально отраженный синус:
-
-
Тангенс вывести так же легко - надо разделить значение строки синуса, на значение строки косинуса:
-
-
Значение котангенса - это перевернутое значение тангенса. В итоге получаем вот такую штуку:
- -

Обратите внимание , что тангенс не существует в П/2, например. Подумайте почему. (На ноль делить нельзя.)

Что тут нужно запомнить: синус - это значение у, косинус - значение х. Тангенс - это отношение у к х, а котангенс - наоборот. так что, чтобы определять значения синусов/косинусов достаточно нарисовать табличку, которую я выше рассказал и круг с осями координат (по ней удобно смотреть значения при углах 0, 90, 180, 360).
- -

Ну и я надеюсь, что вы умеете различать четверти :
- -
От того, в какой четверти находится угол, зависит знак его синуса, косинуса и тд. Хотя, абсолютно примитивные логически размышления выведут вас на верный ответ, если вы будете учитывать, что во второй и третьей четверти х отрицателен, а у отрицателен в третьей и четвертой. Ничего страшного и пугающего.

Думаю будет не лишним упомянуть и формулы приведения аля привидения, как всем слышится, что имеет и толику правды. Формул как таковых не имеется, за ненужностью. Сам смысл всего этого действа: Мы легко находим значения углов только для первой четверти (30 градусов, 45, 60). Тригонометрические функции периодичны, поэтому мы можем любой большой угол перетащить в первую четверть. Тогда мы сразу найдем ее значение. Но просто перетащить мало - нужно не забыть про знак. Вот для этого и есть формулы приведения.
Итак, мы имеем большой угол, а точнее больше 90 градусов: а = 120. И нужно найти его синус и косинус. Для этого мы разложим 120 на такие углы, с которыми можно работать:
sin a = sin 120 = sin (90 + 30)
Видим, что этот угол лежит во второй четверти, синус там положительный, следовательно знак + перед синусом сохраняется.
Чтобы избавиться от 90 градусов, мы меняем синус на косинус. Ну это такое правило, надо запомнить:
sin (90 + 30) = cos 30 = sqrt(3) / 2
А можно представить и по-другому:
sin 120 = sin (180 - 60)
Чтобы избавиться от 180 градусов мы функцию не меняем.
sin (180 - 60) = sin 60 = sqrt(3) / 2
Получили то же значение, значит всё верно. Теперь косинус:
cos 120 = cos (90 + 30)
Косинус во второй четверти отрицателен, значит ставим знак минус. И меняем функцию на противоположную, так как надо убрать 90 градусов.
cos (90 + 30) = - sin 30 = - 1 / 2
Или:
cos 120 = cos (180 - 60) = - cos 60 = - 1 / 2

Что нужно знать, уметь и делать, чтобы переводить углы в первую четверть:
-разложить угол на удобоваримые слагаемые;
-учесть, в какой четверти находится угол, и поставить соответствующий знак, если функция в этой четверти отрицательна или положительна;
-избавиться от лишнего:
*если надо избавиться от 90, 270, 450 и остальные 90+180n, где n - любое целое число, то функция меняется на противоположную (синус на косинус, тангенс на котангенс и наоборот);
*если надо избавиться от 180 и остальных 180+180n, где n - любое целое число, то функция не меняется. (Тут есть одна фича, но объяснить словами ее трудно, ну и ладно).
Вот и всё. Я не считаю нужным запоминать сами формулы, когда можно запомнить пару правил и легко пользоваться ими. Кстати эти формулы очень легко доказываются:
-
-
А еще составляют громоздкие таблицы, то мы то знаем:
-
-

Основные уравнения тригонометрии: их нужно знать очень и очень хорошо, наизусть.
Основное тригонометрическое тождество (равенство):
sin^2(a) + cos^2(a) = 1
Не веришь - лучше проверь сам и убедись. Подставь значения разных углов.
Эта формула очень и очень полезная, всегда помните ее. с помощью нее можно выражать синус через косинус и наоборот, что иногда очень полезно. Но, как и с любой другой формулой, с ней нужно уметь обращаться. Всегда помните, что знак тригонометрической функции зависит от той четверти, в которой находится угол. Поэтому при извлечении корня нужно знать четверть .

Тангенс и котангенс: эти формулы мы уже вывели в самом начале.
tg a = sin a / cos a
ctg a = cos a / sin a

Произведение тангенса и котангенса:
tg a * ctg a = 1
Потому что:
tg a * ctg a = (sin a / cos a) * (cos a / sin a) = 1 - дроби сокращаются.

Как видите все формулы - это игра и комбинация.
Вот еще две, полученные из деления на косинус квадрат и синус квадрат первой формулы:
-
-
Обратите внимание, что две последние формулы можно использовать с ограничением значения угла а, так как делить на ноль нельзя.

Формулы сложения: доказываются с помощью векторной алгебры.
- -
Применяются редко, но метко. Формулы а скане есть, но может неразборчиво или цифровой вид воспринимается легче:
- -

Формулы двойного угла:
Их получают, опираясь на формулы сложения, например: косинус двойного угла - это cos 2a = cos (a + a) - ничего не напоминает? Просто бетту заменили альфой.
- -
Две последующие формулы выведены из первой подстановкой sin^2(a) = 1 - cos^2(a) и cos^2(a) = 1 - sin^2(a).
С синусом двойного угла проще и применяется он нааамного чаще:
- -
А особые извращенцы могут вывести тангенс и котангенс двойного угла, учитывая, что tg a = sin a / cos a и тд.
-
-

Для вышеупомянутых лиц Формулы тройного угла: выводятся они сложением углов 2а и а, так как формулы двойного угла мы уже знаем.
-
-

Формулы половинного угла:
- -
Как их выводят мне неизвестно, точнее как это объяснить... Если расписать эти формулы, подставляя основное тригонометрическое тождество с а/2, то ответ сойдется.

Формулы сложения и вычитая тригонометрических функций:
-
-
Получаются они из формул сложения, но всем пофиг. Встречаются не часто.

Как понимаете, так еще куучи формул, перечисление которых просто бессмысленно, потому что я не смогу что-то адекватное о них написать, а сухие формулы можно найти где угодно, и являют они собой игру с предыдущими имеющимися формулами. Всё жутко логично и точно. Расскажу только на последок о методе вспомогательного угла:
Преобразование выражения a cosx + b sinx к виду Acos(x+) или Asin(x+) называется методом введения вспомогательного угла (или дополнительного аргумента). Метод применяется при решении тригонометрических уравнений, при оценке значений функций, в задачах на экстремум, и что важно отметить, некоторые задачи не могут быть решены без введения вспомогательного угла.
Как ты я не пытался объяснить этот метод, ничего не вышло, так что придется самим:
-
-
Вещь страшная, но полезная. Если порешать задачи, должно получиться.
Отсюда например: mschool.kubsu.ru/cdo/shabitur/kniga/trigonom/metod/metod2/met2/met2.htm

Следующими по курсу идут графики тригонометрических функций. Но для одного урока хватит. Учитывая, что в школе это преподают по полгода.

Пишите свои вопросы, решайте задачи, просите сканы каких-нибудь заданий, разбирайтесь, пробуйте.
Всегда ваш, Дэн Фарадей.

При выполнении тригонометрических преобразований следуйте следующим советам:

  1. Не пытайтесь сразу придумать схему решения примера от начала до конца.
  2. Не пытайтесь преобразовывать сразу весь пример. Продвигайтесь вперёд маленькими шагами.
  3. Помните, что кроме тригонометрических формул в тригонометрии можно по-прежнему применять все справедливые алгебраические преобразования (вынесение за скобку, сокращение дробей, формулы сокращённого умножения и так далее).
  4. Верьте, что всё будет хорошо.

Основные тригонометрические формулы

Большинство формул в тригонометрии часто применяется как справа налево, так и слева направо, поэтому учить эти формулы нужно так хорошо, чтобы Вы легко смогли применить некоторую формулу в обоих направлениях. Запишем для начала определения тригонометрических функций. Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Определение косинуса:

Определение тангенса:

Определение котангенса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Формулы двойного угла. Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Дополнительные тригонометрические формулы

Тригонометрические формулы сложения. Синус суммы:

Синус разности:

Косинус суммы:

Косинус разности:

Тангенс суммы:

Тангенс разности:

Котангенс суммы:

Котангенс разности:

Тригонометрические формулы преобразования суммы в произведение. Сумма синусов:

Разность синусов:

Сумма косинусов:

Разность косинусов:

Сумма тангенсов:

Разность тангенсов:

Сумма котангенсов:

Разность котангенсов:

Тригонометрические формулы преобразования произведения в сумму. Произведение синусов:

Произведение синуса и косинуса:

Произведение косинусов:

Формулы понижения степени.

Формулы половинного угла.

Тригонометрические формулы приведения

Функцию косинус называют кофункцией функции синус и наоборот. Аналогично функции тангенс и котангенс являются кофункциями. Формулы приведения можно сформулировать в виде следующего правила:

  • Если в формуле приведения угол вычитается (прибавляется) из 90 градусов или 270 градусов, то приводимая функция меняется на кофункцию;
  • Если же в формуле приведения угол вычитается (прибавляется) из 180 градусов или 360 градусов, то название приводимой функции сохраняется;
  • При этом перед приведенной функцией ставится тот знак, который имеет приводимая (т.е. исходная) функция в соответствующей четверти, если считать вычитаемый (прибавляемый) угол острым.

Формулы приведения задаются в виде таблицы:

По тригонометрической окружности легко определять табличные значения тригонометрических функций:

Тригонометрические уравнения

Для решения некоторого тригонометрического уравнения его нужно свести к одному из простейших тригонометрических уравнений, которые будут рассмотрены ниже. Для этого:

  • Можно применять тригонометрические формулы приведенные выше. При этом не нужно пытаться преобразовать сразу весь пример, а нужно двигаться вперед маленькими шагами.
  • Нужно не забывать о возможности преобразовать некоторое выражение и с помощью алгебраических методов, т.е. например, вынести что-нибудь за скобку или, наоборот, раскрыть скобки, сократить дробь, применить формулу сокращенного умножения , привести дроби к общему знаменателю и так далее.
  • При решении тригонометрических уравнений можно применять метод группировки . При этом нужно помнить, что для того чтобы произведение нескольких множителей было равно нолю, достаточно чтобы любой из них был равен нолю, а остальные существовали .
  • Применяя метод замены переменной , как обычно, уравнение после введения замены должно стать проще и не содержать первоначальной переменной. Также нужно не забыть выполнить обратную замену.
  • Помните, что однородные уравнения часто встречаются и в тригонометрии.
  • Раскрывая модули или решая иррациональные уравнения с тригонометрическими функциями нужно помнить и учитывать все тонкости решения соответствующих уравнений с обычными функциями.
  • Помните про ОДЗ (в тригонометрических уравнениях ограничения на ОДЗ в основном сводятся к тому, что делить на ноль нельзя, но не забываем и о других ограничениях, особенно о положительности выражений в рациональных степенях и под корнями четных степеней). Также помните, что значения синуса и косинуса могут лежать только в пределах от минус единицы до плюс единицы включительно.

Главное, если не знаете, что делать, делайте хоть что-нибудь, при этом главное правильно использовать тригонометрические формулы. Если то, что Вы при этом получаете становиться все лучше и лучше, значит продолжайте решение, а если становиться хуже, значит вернитесь к началу и попробуйте применить другие формулы, так поступайте пока не наткнетесь на правильный ход решения.

Формулы решений простейших тригонометрических уравнений. Для синуса существует две равнозначные формы записи решения:

Для остальных тригонометрических функций запись однозначна. Для косинуса:

Для тангенса:

Для котангенса:

Решение тригонометрических уравнений в некоторых частных случаях:

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Еще в 1905 г. русские читатели могли прочесть в книге Уильяма Джеймса “Психология” его рассуждения о том, “почему зубрение представляет такой дурной способ учения?”

    “Знания, приобретенные путем простого зубрения, почти неизбежно забываются совершенно бесследно. Наоборот, умственный материал, набираемый памятью постепенно, день за днем, в связи с различными контекстами, связанный ассоциативно с другими внешними событиями и неоднократно подвергший обсуждению, образует такую систему, вступает в такую связь с остальными сторонами нашего интеллекта, легко возобновляется в памяти массою внешних поводов, что остается надолго прочным приобретением”.

    С тех пор прошло более 100 лет, а слова эти поразительно остаются злободневными. В этом каждодневно убеждаешься, занимаясь со школьниками. Массовые пробелы в знаниях настолько велики, что можно утверждать: школьный курс математики в дидактическом и психологическом отношениях – не система, а некое устройство, поощряющее кратковременную память и нисколько не заботиться о памяти долговременной.

    Знать школьный курс математики – значит владеть материалом каждого из направлений математики, быть в состоянии актуализировать любое из них в любое время. Чтобы достичь этого, нужно систематически обращаться каждому из них, что порой не всегда возможно из-за сильной загруженности на уроке.

    Есть другой путь долговременного запоминания фактов и формул – это опорные сигналы.

    Тригонометрия – один из больших разделов школьной математики, изучаемой в курсе геометрии 8, 9 классов и в курсе алгебры 9 класса, алгебры и начал анализа в 10 классе.

    Самый большой объем изучаемого материала по тригонометрии приходится на долю 10 класса. Большую часть этого материала из тригонометрии можно изучить и запомнить на тригонометрическом круге (окружность единичного радиуса с центром в начале прямоугольной системы координат). Приложение1.ppt

    Это следующие понятия тригонометрии:

    • определения синуса, косинуса, тангенса и котангенса угла;
    • радианное измерение углов;
    • область определения и область значений тригонометрических функций
    • значения тригонометрических функций для некоторых значений числового и углового аргумента;
    • периодичность тригонометрических функций;
    • четность и нечетность тригонометрических функций;
    • возрастание и убывание тригонометрических функций;
    • формулы приведения;
    • значения обратных тригонометрических функций;
    • решение простейших тригонометрических уравнений;
    • решение простейших неравенств;
    • основные формулы тригонометрии.

    Рассмотрим изучение этих понятий на тригонометрическом круге.

    1) Определение синуса, косинуса, тангенса и котангенса.

    После введения понятия тригонометрического круга (окружность единичного радиуса с центром в начале координат), начального радиуса (радиус окружности по направлению оси Ох), угла поворота, учащиеся самостоятельно получают определения для синуса, косинуса, тангенса и котангенса на тригонометрическом круге, используя определения из курса геометрии, то есть, рассматривая прямоугольный треугольник с гипотенузой, равной 1.

    Косинусом угла называется абсцисса точки на окружности при повороте начального радиуса на данный угол.

    Синусом угла называется ордината точки на окружности при повороте начального радиуса на данный угол.

    2) Радианное измерение углов на тригонометрическом круге.

    После введения радианной меры угла (1 радиан – это центральный угол, которому соответствует длина дуги, равная длине радиуса окружности), учащиеся делают вывод, что радианное измерение угла – это числовое значение угла поворота на окружности, равное длине соответствующей дуги при повороте начального радиуса на заданный угол. .

    Тригонометрический круг разделен на 12 равных частей диаметрами окружности. Зная, что угол радианам, можно определить радианное измерение для углов кратных .

    А радианные измерения углов, кратных, получаются аналогично:

    3) Область определения и область значений тригонометрических функций.

    Будет ли соответствие углов поворота и значений координат точки на окружности функцией?

    Каждому углу поворота соответствует единственная точка на окружности, значит данное соответствие – функция.

    Получаем функции

    На тригонометрическом круге видно, что область определения функций – множество всех действительных чисел, а область значений - .

    Введем понятия линий тангенсов и котангенсов на тригонометрическом круге.

    1) Пусть Введем вспомогательную прямую, параллельную оси Оу, на которой определяются тангенсы для любого числового аргумента.

    2) Аналогично получаем линию котангенсов. Пусть у=1, тогда . Значит, значения котангенса определяются на прямой, параллельной оси Ох.

    На тригонометрическом круге без труда можно определить область определения и область значений тригонометрических функций:

    для тангенса -

    для котангенса -

    4) Значения тригонометрических функций на тригонометрическом круге.

    Катет, противолежащий углу в равен половине гипотенузы, то есть Другой катет по теореме Пифагора:

    Значит по определению синуса, косинуса, тангенса, котангенса можно определить значения для углов кратных или радианам. Значения синуса определяются по оси Оу, косинуса по оси Ох, а значения тангенса и котангенса можно определить по дополнительным осям, параллельным осям Оу и Ох соответственно.

    Табличные значения синуса и косинуса расположены на соответствующих осях следующим образом:

    Табличные значения тангенса и котангенса -

    5) Периодичность тригонометрических функций.

    На тригонометрическом круге видно, что значения синуса, косинуса повторяются через каждые радиана, а тангенса и котангенса – через радиан.

    6)Четность и нечетность тригонометрических функций.

    Это свойство можно получить, сравнивая значения положительных и им противоположных углов поворота тригонометрических функций. Получаем, что

    Значит, косинус – четная функция, все остальные функции – нечетные.

    7) Возрастание и убывание тригонометрических функций.

    По тригонометрическому кругу видно, что функция синус возрастает и убывает

    Аналогично рассуждая, получаем промежутки возрастания и убывания функций косинуса, тангенса и котангенса.

    8) Формулы приведения.

    За угол берем меньшее значение угла на тригонометрическом круге. Все формулы получаются в сравнении значений тригонометрических функций на катетах выделенных прямоугольных треугольников.

    Алгоритм применения формул приведения:

    1) Определить знак функции при повороте на заданный угол.

    При повороте на угол функция сохраняется, при повороте на угол - целое, нечетное число, получается кофункция (

    9) Значения обратных тригонометрических функций.

    Введем обратные функции для тригонометрических функций, пользуясь определением функции.

    Каждому значению синуса, косинуса, тангенса и котангенса на тригонометрическом круге соответствует только одно значение угла поворота. Значит, для функции область определения , область значений - Для функции область определения - , область значений - . Аналогично получаем область определения и область значений обратных функций для косинуса и котангенса.

    Алгоритм нахождения значений обратных тригонометрических функций:

    1) нахождение на соответствующей оси значения аргумента обратной тригонометрической функции;

    2) нахождение угла поворота начального радиуса с учетом области значений обратной тригонометрической функции.

    Например:

    10) Решение простейших уравнений на тригонометрическом круге.

    Чтобы решить уравнение вида , найдем точки на окружности, ординаты которых равны и запишем соответствующие углы с учетом периода функции.

    Для уравнения , найдем точки на окружности, абсциссы которых равны и запишем соответствующие углы с учетом периода функции.

    Аналогично для уравнений вида Значения определяются на линиях тангенсов и котангенсов и записываются соответствующие углы поворота.

    Все понятия и формулы тригонометрии получают сами ученики под четким руководством учителя с помощью тригонометрического круга. В дальнейшем этот “круг” будет служить для них опорным сигналом или внешним фактором для воспроизведения в памяти понятий и формул тригонометрии.

    Изучение тригонометрии на тригонометрическом круге способствует:

    • выбору оптимального для данного урока стиль общения, организации учебного сотрудничества;
    • целевые ориентиры урока становятся личностно значимыми для каждого ученика;
    • новой материал опирается на личный опыт действия, мышления, ощущения учащегося;
    • урок включает в себя различные формы работы и способы получения и усвоения знаний; присутствуют элементы взаимо- и самообучения; само- и взаимоконтроля;
    • имеет место быстрое реагирование на непонимание и ошибку (совместное обсуждение, опоры-подсказки, взаимоконсультации).
    © bookwomanslife.ru, 2024
    Образовательный портал - Bookwomanslife