Сцепленное наследование. Группы сцепления. Хромосомная теория наследственности. Основные положения хромосомной теории Наследственности Полное и неполное сцепление генов группы сцепления

23.01.2024

Гены, расположенные в одной хромосоме, представляют собой группу сцепления . Сцепление генов - это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Сцепление генов, расположенных в одной хромосоме, может быть полным или неполным. Полное сцепление : Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость - над зачаточными крыльями. Серое тело - А, черное тело а; длиннокрылые - В, зачаточные крылья - в. При спермиогенезе в период мейоза гомологичные хромосомы расходятся в разные половые клетки. 1) АА//АВ*ав//ав=4АВ//ав; 2) АВ//ав*АВ//ав=АВ//АВ, АВ//ав, ав//АВ, ав//ав. Если гены наход в аутосомах, то при полном сцеплении в F1 будет единообразие по фенотипу, а в F2 – 3:1, по скольким бы признакам не различались родители, т.к. изучается одна пара хромосом.

Явление неполного сцепления в наследовании признаков

В результате скрещивания потомки имели сочетание признаков, как у исходных родительских форм, но появились особи и с новым сочетанием признаков - сцепление неполное . В – серое, в – чёрное, V – нормальные, v - зачаточные. Bv||Bv*bV||bV=Bv||bV; самок из первого поколения скрестили с самцами анализаторами: BV//bV*bv//bv=Bv//bv,bV//bv – не кроссоверное. Bv//bV*bv//bv=2bv//bv, 2BV//bv – кросоверное. Обмен гомологичных хромосом своими частями называется перекрестом или кроссинговером. Особей с новыми сочетаниями признаков, образовавшимися в результате кроссинговера, называют кроссоверами. Количество появления новых форм зависит от частоты перекреста, которая определяется по следующей формуле: Частота перекрёста = (Число кроссоверных форм)·100/ Общее число потомков. За единицу измерения перекреста принята его величина, равная 1 %. Ее называют морганидой. Величина перекреста зависит от расстояния между изучаемыми генами. Чем больше отдалены гены друг от друга, тем чаще происходит перекрест; чем ближе они расположены, тем вероятность перекреста меньше.

Карты хромосом. Пример их построения

Карта хромосом - план расположения генов в хромосоме. Гены расположены в хромосомах в линейной последовательности на определенных расстояниях друг от друга. Явление торможения кроссинговера на одном участке кроссинговером на другом получило название интерференции. Чем меньше будет расстояние, разделяющее три гена, тем больше интерференция. Принимая во внимание линейное расположение генов в хромосоме, взяв за единицу расстояния частоту кроссинговера, Морган составили первую карту расположения генов в одной из хромосом дрозофилы: сh___13.6___ y___28.2___b. При построении карт указывают не расстояние между генами, а расстояние до каждого гена от нулевой точки начала хромосомы. Доминантный аллель обозначается прописной буквой, рецессивный - строчной. После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, построенное на основании частоты кроссинговера, истинному расположению. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Материалом для проверки служили хромосомы, у которых вследствие мутации возникали различные хромосомные перестройки: не хватало отдельных дисков, или они были перевернуты, или удвоены. Физические расстояния между генами на генетической карте не вполне соответствуют установленным цитологическим. Однако это не снижает ценности генетических карт хромосом для предсказания вероятности появления особей с новыми сочетаниями признаков. На основании анализа результатов многочисленных экспериментов с дрозофилой Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Бисексуальность, интерсексуальность, гиандроморфизм, химеризм по половым хром-мам. Роль гормонов и условий среды в развит признаков пола

Любая зигота имеет х-хром-мы и аутосомы, т.е. имеет гены и женского и мужского пола, т.е. генетически любой организм бисексуальный (двуполый). Интерсексы – гермофродиты – особи с развитыми и женскими и мужскими признаками. 2 типа: истинные – имеют женские и мужские половые железы из-за нарушения баланса генов; условные – имеют железы одного пола, а наружный половой признак другого пола из-за нарушения баланса гормонов. Иногда у насекомых и животных встречается гиандроморфы – одна часть тела имеет женские признаки, а другая – мужские. Причины: зигота женского пола разделяется на 2 бластомера. Один из них потерял одну х-хром-му. Из этого бластомера будет развиваться мужская половина тела. Химеризм по половине хромосом хх/ху встречается у многоплодных животных, у бычков – когда в одном и том же организме содержатся хх- хромосомы, а воспроизводство ху- хромосом нарушено. При обычном кормлении вырастают самцы, а если в корм добавлять женские половые гормоны, то вырастают самки (рыбки мальки). Если личинка морского червя прикрепится ко дну моря – самка, если к хоботку самки – самец.

Типы детерминации пола у животных. Первичное и вторичное соотношение полов. Проблема регулирования пола

Детерминация обеспечивает образование равного кол-ва самцов и самок, что необходимо для нормального самовоспроизведения вида. Типы : 1) эпигамный – пол особи определяется в процессе онтогенеза, зависит от внешней среды. 2) прогамный – пол определяется в ходе гаметогенеза у родителей особи. 3) сингамный – пол определяется в момент слияния гамет. Первичное и вторичное соотношение полов: соотношение полов, кот определяется в момент слияния гамет, наз-ся первичным , всегда 1:1. Любое изменение в соотношении полов, как до, так и после рождения, наз-ся вторичным. Обычно после рождения оно смещается в пользу женского пола, поэтому у многих видов животных и у чел-ка мужских особей рождается больше, чем женских: кролики – 57%, человек – 51%, птицы – 59%. Проблема регулирования пола: имеет важное хозяйственное значение. Н-р: в молочном скотоводстве, в яичном птицеводстве желательны самки, а там, где основной продукт – мясо, лучше самцы. Проблема в том, чтобы разделить сперму на х- и у- фракции. Способы: 1) электрофорез – х – спермии имеют отрицательный заряд – движутся к катоду, а у – спермии – к аноду. Гарантия 80%. 2) Метод осаждения – х – сперма более плотная и осядает вниз, а у – остаётся сверху. 3) Использование набора кислот для изменения рН женских половых путей для создания условий только для х – или только для у-. 4) Партеногенез: геногенез – получение самок – рентгеновскими лучами облучают овоцит. первого порядка, тем самым задерживают расхождение хром-м, образ-ся яйцеклетка с диплоидным набором хром-м, в кот без оплодотворения развивается самка. Андрогенез – получение самцов – ядро яйцеклетки убивают лучами рентгена, затем в неё проникают два спермия, ядра сливаются, давая диплоидный набор, будет самец. 5) Метод разделения спермы на фракции по кол-ву ДНК в спермиях. 6) Чем моложе родители, тем вероятность рождения у них мужского пола больше. 7) Чем больше спермы в половых путях самки, тем вероятнее рождение мужского пола. 8) Чем больше хранится сперма – самка. 9) У птицы кормление: если петуху в корм добавлять Са, то самка, а если К – самцы. 10) В любой популяции действует закон равновесия, т.е. соотношение полов стремится 1:1.

После повторного переоткрытия в 1900 г. правил наследования установленных г. Менделем в 1865 г. началась широкая экспериментальная проверка применимости их к различным животным и растениям.

Оказалось, что не все случаи наследования укладываются в эти правила.

Сталкиваясь в начале с отдельными отклонениями, а затем с множеством исключений из Менделизма, исследователи тщательно изучали их. В генетике начала зарождаться еще одна более широкая, чем менделизм теория – хромосомная теория наследственности.

Томас Морган окончательно связал явление наследственности с цитологией. Он доказал, что материальными носителями наследственности являются находящиеся в ядрах клеток хромосомы с заключенными в них генами.

Так как у каждого вида имеется строго определенное число хромосом, а количество различных признаков очень велико, приходится допустить, что в одной хромосоме лежит несколько или много генов определяющих признак.

Пример: у дрозофилы из 4 пар хромосом изучено 1000 генов, у кукурузы из 10 пар хромосом 500 генов, у человека из 23 пар – 2000генов, некоторые ученые утверждают, что до 1 млн.генов.

Может ли каждый ген быть локализован в отдельной хромосоме? Нет – не может.

Следовательно, в каждой хромосоме должно быть множество генов.

При гаметогенезе происходит расхождение хромосом, а вместе с ними и гены. Гены, расположенные в одной хромосоме наследуются целой группой и образуют группу сцепления.

Гены одной группы сцепления наследуются независимо от другой группы сцепления.

Число групп сцепления равно гаплоидному набору хромосом.

Пример: у дрозофилы 4 пары хромосом, из них найдено 4 группы сцепления; кролик – из 22 пар хромосом найдено 19 пар сцепления; мышь – из 20 пар хромосом найдено 19 пар сцепления; человек – из 23 пар хромосом найдено 25 групп сцепления, 22 группы – по числу пар аутосом, в X и Y хромосомах и 25-я группа сцепления в митохондриальной ДНК.

Явление сцепленного наследования признаков было обнаружено в 1906 году Бэтсоном и Пеннетом. Эти исследователи изучали скрещивание растений душистого горошка различающихся по двум признакам: форме пыльцы и окраске цветка. Согласно менделевским закономерностям у гибридов второго поколения в этом случае должно наблюдаться расщепление признаков, характерное для дигибридного скрещивания 9: 3: 3:1.

Однако Бэтсон и Пеннет обнаружил иное. Два признака (форма пыльцы и окраска цветка) у гибридов как бы стремились остаться в исходных родительских комбинациях.

Бэтсон и Пеннет не смогли дать этому объяснение.

Объяснение этому явлению было дано позже школой Томаса Моргана, введшего термин – сцепление генов. Он доказал, что гены находящиеся в одной хромосоме тесно связаны между собой, т.е. сцеплены и расположены в линейном порядке.

Создав хромосомную теорию наследственности, Морган доказал, что существует полное и неполное сцепление генов.

Свои опыты Морган проводил на мухе-дрозофиле.

Для I опыта взяты мухи: с серым телом и зачаточными крыльями самцы, которых он скрестил с самками черное тело длинные крылья.

д зачат Д длин

Гаметы С с


С д – гены расположены в одной хромосоме. По обеим парам они гомозиготны. Гибриды имели в F 1 100% длиннокрылые серые (гетерозиготные). Он отобрал самцов из F 1 и скрещивал их с самочками имеющих 2 рецессивных признака (анализирующее скрещивание).

♂ С с ♀ с

д Д д зачат

серые черные

длинные зачаточные

С с с с Во F 2 поколении появилось

потомство 2 х типов:

50% - серые с зачаточными крыльями,

д д Д д 50% - черные с длинными крыльями.

серые черные

зачат. длин.

Произошло полное сцепление генов.

II опыт. Самок Морган взял из F 1 серых длиннокрылых.

♀ СсДд х ♂ ссдд (анализирующее)

серое черное

длин. зачат.

С с с с с с С с

д д Д д д д Д д

серые черные черные серые

зачат. длин. зачат. длин.

Во II поколении получилось 4 разных фенотипа: 145 – черные длиннокрылые = 41,5%; 150 – серые зачаточные = 41,5%.

Как у родительских форм:

28% - серые длиннокрылые – 8,5%

33% - черные зачаточные – 8,5%

новые сочетания 17%

Сцепление в этом случае явилось не полным. Однако, гены находящиеся в одной хромосоме сцеплены не абсолютно. Большая часть особей имеет признаки родителей, а меньшая часть особей имеет новые сочетания признаков. Причиной неполного сцепления является кроссинговер.

Как можно объяснить это явление новых сочетаний, если гены входят в состав одной хромосомы?

Объясняется это тем, что во время гаметогенеза (при редукционном делении) хромосомы обвиваются друг около друга обмениваются частями, а затем они расходятся (разрываются) получаются новые хромосомы (одна часть от матери, другая от отца).

Кроссинговер

Процесс обмена участками хромосом получил название – перекреста хромосом или кроссинговер.

Наличие механизма кроссинговера расширяет возможность комбинативной изменчивости и имеет большое значение в эволюции животного мира.

Кроссинговер обнаруживается, когда гены находятся в гетерозиготном состоянии. Особи полученные с помощью кроссинговера называются кроссоверные и без кроссинговера некроссоверные.

Кроссинговер может быть одиночный, двойной и тройной. Чаще одиночный, реже двойной и тройной. Это объясняется тем, что хромосома представляет собой упругое тело, благодаря чему образование петли на одном участке тормозит ее образование на другом, в результате, перекрёст одновременно на двух участках происходит реже. Явление торможения называется интерференцией. При двойном перекрестке хромосомы разрываются в двух точках, в результате чего они обмениваются серединами, при тройном – в трех точках с обменами уже двумя участками хромосом, что приводит к еще большему возрастанию изменчивости половых клеток. Однако двойной и тройной перекресты происходят значительно реже одиночных.


Поурочное планирование 10 класс

Тема: «Полное и неполное сцепление генов. Генетические карты хромосом».

Цель урока: ознакомить учащихся с процессом полного и неполного сцепления генов; и сформировать представление о генетических картах хромосом.

Учебно – воспитательные задачи:

    Раскрыть сущность явления сцепленного наследования генов.

    Сформировать знания об основных положениях закона Т. Моргана.

    Познакомить с принципом составления генетических карт

    Развивать логическое мышления учащихся.

Оборудование, наглядные пособия : таблицы по общей биологии, иллюстрирующие сцепленное наследование генов и признаков, презентация к уроку, задачи на закрепление нового материала.

Тип урока: Урок изучения нового материала.

Методы: объяснительно - иллюстративный.

Ход урока:

I Организационный момент

Проверка личного состава учащихся и визуальной готовности класса к уроку.

II Проверка знаний учащихся

Фронтальный опрос:

1. Назовите три закона Г. Менделя?

2. Каких правил придерживался Г. Мендель при проведении своих опытов?

3. Сформулируйте закон чистоты гамет. Кому принадлежит открытие этого закона?

4. Всегда ли признаки можно чётко разделить на доминантные и рецессивные?

5. Какое название получило это явление?

6. Всегда ли по фенотипу можно определить, какие гены содержит данная особь? Приведите пример.

7. Можно ли установить генотип особей, которые не различаются по фенотипу? Какой метод используют для этого?

8. Какими особенностями характеризуется дигибридное скрещивание?

Молодцы! С этим этапом работы Вы справились

III Изучение нового материала:

Сцепленное наследование генов

Г.Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Постепенно факты исключений из третьего закона Менделя накапливались. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Любой организм обладает многообразием морфологических, физиологических, биохимических и прочих признаков и свойств, причем каждый признак или свойство контролируется одним или несколькими генами, локализованными в хромосомах.

Однако если число генов организма огромно и может исчисляться десятками тысяч, то число хромосом сравнительно невелико и, как правило, измеряется несколькими десятками. Поэтому в каждой паре хромосом локализованы сотни и тысячи аллельных генов, образующих группы сцепления.

Установлено полное соответствие между числом групп сцепления и числом пар хромосом. Например, у кукурузы набор хромосом 2n = 20 и 10 групп сцепления, а у дрозофилы 2n = 8 и 4 группы сцепления, то есть число групп сцепления равно гаплоидному набору хромосом.

Закон Томаса Моргана

Гены, локализованные в одной хромосоме, передаются совместно, и способ их наследования отличается от наследования генов, локализованных в разных парах гомологичных хромосом.

Так, например, при независимом распределении хромосом дигибрид АаВb образует четыре типа гамет (АВ , аВ , Аb , аb ), а при условии полного сцепления такой же дигибрид даст только два типа гамет (АВ и аb ), так как эти гены расположены в одной хромосоме.

Разработка проблемы сцепленного наследования генов принадлежит школе Т.Моргана (1866–1945). Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка хорошо различимы – у самца брюшко меньше и темнее. Кроме того, они имеют различия по многочисленным признакам и могут размножаться в пробирках на дешевой питательной среде.

Изучая закономерности наследования генов, локализанных в одной и той же хромосоме , Морган пришел к выводу, что они наследуются сцепленно . Это и есть закон Т.Моргана.

Кроссинговер - процесс обмена участками во время в профазе I . Помимо мейотического, описан также . Хромосома разделяется на эти участки в определённых точках, одних и тех же для одного вида, что может быть определением вида на генетическом уровне, месторасположение этих точек задаётся единственным геном.

Поскольку кроссинговер вносит возмущения в картину , его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя , тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования.

Полное и неполное сцепление

Для определения типа наследования двух пар генов (сцепленное или независимое) необходимо провести анализирующее скрещивание и по его результатам сделать вывод о характере наследования генов. Рассмотрим три возможных варианта результатов анализирующего скрещивания.

1) Независимое наследование .

Если в результате анализирующего скрещивания среди гибридов образуется четыре класса фенотипов, значит, гены наследуются независимо.

2) Полное сцепление генов .

При полном сцеплении генов А и В по результатам анализирующего скрещивания обнаруживают-
ся два фенотипических класса гибридов, полностью копирующих родителей.

3) Неполное сцепление генов .

В случае неполного сцепления генов А и В при анализирующем скрещивании появляются четыре фенотипа, два из которых имеют новое сочетание генов: Аb аb ; аВ аb . Появление подобных форм свидетельствует о том, что дигибрид с гаметами АВ │ и аb │ образует кроссоверные гаметы Аb │ и аВ │. Появление таких гамет возможно только в результате обмена участками гомологичных хромосом, то есть в процессе кроссинговера. Количество кроссоверных гамет значительно меньшее, чем некроссоверных.

Частота перекреста пропорциональна расстоянию между генами. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и чаще перекрест. Следовательно, о расстоянии между генами в хромосомах можно судить по частоте перекреста.

Генетические карты

Под генетическим картированием обычно понимают определение положения какого-либо гена по отношению к другим генам.

Рассмотрим порядок составления генетических карт.

1. Установление группы сцепления (то есть определение хромосомы, в которой локализован данный ген). Для этого необходимо иметь хотя бы по одному гену-маркеру в каждой группе сцепления.

2. Нахождение места локализации исследуемого гена в хромосоме. Для этого проводится скрещивание мутантной формы с нормальной и учитывается результат кроссинговера.

3. Определение расстояния между сцепленными генами, что позволяет составлять генетические карты хромосом, на которых указаны порядок расположения генов в хромосомах и относительные расстояния их друг от друга. Чем частота кроссинговера выше, тем на большем расстоянии друг от друга располагаются гены. Если установлено, что между сцепленными генами А и В частота кроссинговера 10%, а между генами В и С – 20%, то очевидно, что расстояние ВС в 2 раза больше, чем АВ . Расстояние между генами выражается в единицах, соответствующих 1% кроссинговера. Эти единицы называют морганидами.

Таким образом, на основе данных о частоте кроссинговера составляются генетические карты.

IV Закрепление знаний

Решение генетической задачи

Самку дрозофилы, гетерозиготную по рецессивным генам темной окраски тела и миниатюрных крыльев, скрестили с самцом, имевшим темное тело и миниатюрные крылья. От этого скрещивания было получено:

244 мухи с темным телом и миниатюрными крыльями;
– 20 мух с серой окраской тела и миниатюрными крыльями;
– 15 мух с темной окраской тела и нормальными крыльями;
– 216 мух с серой окраской тела и нормальными крыльями.

Исходя из приведенных данных определите, являются две эти пары генов сцепленными или нет. Как гены сцеплены?

Дано :

А – серое тело
а – темное тело
В – нормальные крылья
b – миниатюрные крылья

Характер наследования генов А и В – ?

Решение

Результаты расщепления среди гибридов (два фенотипических класса являются господствующими и повторяют фенотипически и генотипически родительские формы, а два других класса фенотипов представлены небольшим количеством особей) свидетельствуют о неполном сцепление генов §41, стр.161-164. Ответить на вопросы стр.165.

Задача №1. Дигетерозиготное растение гороха с гладкими семенами и усиками скрестили с растением с морщинистыми семенами без усиков. Известно, что оба доминантных гена (гладкие семена и наличие усиков) локализованы в одной хромосоме, кроссинговера не происходит. Составьте схему решения задачи. Определите генотипы родителей, фенотипы и генотипы потомства, соотношение особей с разными генотипами и фенотипами. Какой закон при этом проявляется?

А - гладкие семена, а - морщинистые семена
B - наличие усиков, b - без усиков

AB/ab

ab/ab

AB/ab

ab/ab

гладкие
семена,
усы

морщинист.
семена,
без усов

50%

50%

Если кроссинговер не происходит, то у дигетерозиготного родителя образуется только два вида гамет (полное сцепление).

Лекция №7 Хромосомная теория наследственности.

План лекции: 1. Основные положения хромосомной теории наследственности.

2. Генетический анализ полного сцепления.

3. Генетический анализ неполного сцепления.

4. Картирование хромосом.

Основные положения хромосомной теории наследственности.

Основные положения хромосомной теории наследственности были сформулированы в 1910-1916 годах Т.Морганом с сотрудниками .

Основные положения:

  1. Гены находятся в хромосомах, линейно, на определённом расстоянии друг от друга.
  2. Гены, расположенные в одной хромосоме, образуют одну группу сцепления и наследуются совместно (сцепленно); число групп сцепления определяется гаплоидным набором хромосом (1п), у гетерогаметного пола число групп сцепления может быть на одну больше (1п+1).
  3. У гетерозиготных особей группы сцепления могут изменяться в результате кроссинговера – обмена участками гомологичных хромосом.
  4. Частота кроссинговера определяется по проценту кроссоверных особей и зависит от расстояния между генами: чем гены дальше друг от друга находятся, тем чаще наблюдается кроссинговер, но не более 50%.
  5. Используя закономерности линейного расположения генов в хромосомах и частоту кроссинговера как показатель расстояния между отдельными парами генов, можно построить карты расположения генов в хромосомах (картировать хромосомы); расстояние определяется в процентах кроссоверных особей или в сантиморганидах (1% = 1сМ).

Генетический анализ полного сцепления.

Полное сцепление означает, что гены, находящиеся в одной паре гомологичных хромосом, своего места расположения не изменяют и наследуются совместно. Кроссинговер, даже если и происходит, то исходную комбинацию генов в каждой из хромосом не затрагивает. Такая комбинация генов передаётся из поколения в поколение в одном и том же сочетании.

Определение групп сцепления основано на изучении характера фенотипического расщепления у гибридов второго поколения (F 2) полученного по схеме дигибридного скрещивания в соответствии с третьим законом Г.Менделя. Если у потомков F 2 наблюдается сочетание признаков такое же, как и у исходных родителей (либо одного, либо другого) в соотношении 3:1 , то это говорит о полном сцеплении, так как при независимом наследовании должны были появиться четыре фенотипических класса особей в соотношении 9:3:3:1.



P AABB × aabb

F 1 AaBb

Схема 2. Скрещивание при условии полного сцепления.

F 1 AaBb × ааbb

Как видно, все три схемы до второго поколения выглядят совершенно одинаково. Сравнительный анализ расщепления в первой и второй схеме наглядно показывает различия между независимым наследованием и полным сцеплением (во второй схеме отсутствуют два фенотипа, что говорит о нарушении третьего закона Г.Менделя). Сравнительный анализ расщепления во второй и третьей схеме наглядно показывает различия между полным и неполным сцеплением (появление в третьей схеме ещё двух фенотипов при условии, что гены А и В составляют одну группу сцепления). Однако, сравнивая первую и третью схемы , видно, что они очень похожи : в каждой по четыре фенотипа. Различить их можно только на основе анализа числового расщепления по фенотипу . Кроссоверные особи, отличающиеся от родителей сочетанием признаков, составляют 20% от общего числа, некроссоверные 80%. При этом видна ещё одна закономерность : группы кроссоверных и некроссоверных особей , в свою очередь каждая, разбиваются на два равных по частоте встречаемости фенотипа (кроссоверные 2×10%, некроссоверные 2×40%). Следовательно, различить первую и третью схемы можно лишь на основе анализа числового расщепления с применением методов математической статистики.

Картирование хромосом.

Закон Моргана : Если А, В и С – гены, расположенные в одной хромосоме, и известно расстояние между А и В, В и С, то расстояние между А и С есть функция суммы или разности этих расстояний.

Картирование хромосом начинается с определения расстояния между конкретными парами генов (А-В, В-С, А-С) на основе анализа стандартных схем скрещивания.

Сначала определяется расстояние между генами А и В:

Р ААВВ × ааbb

F 1 AaBb × aabb

AB Ab aB ab
ab AaBb Aabb aaBb aabb
40% 10% 10% 40%
40% 20% 40%

По данной схеме расстояние между генами А и В = 20% (или сМ). Далее создаётся рисунок условной хромосомы, на котором произвольно отмечаются две точки, обозначающие локусы генов А и В. На рисунке расстояние отмеряется в «см» или «мм» и, следовательно, неметрическая система измерения (% или сМ) заменяется метрической. Это даёт возможность использовать выбранное расстояние как эталон, по которому в соответствии с величиной кроссинговера определяется место расположения других генов.

Р ААCC × ааcc

F 1 AaCc × aacc

AC Ac aC ac
ac AaCc Aacc aaCc Aacc
47,5% 2,5% 2,5% 47,5%
47,5% 5% 47,5%

По данной схеме расстояние между генами А и С = 5%. Для гена С появляются два возможных места положения, находящиеся на одинаковом расстоянии (5%) справа и слева от гена А. Однако, один ген не может занимать одновременно два локуса, следовательно одна точка лишняя (неверная), её надо удалить. Для определения точного места расположения гена С проводится очередное скрещивание (по стандартной схеме), в котором определяется расстояние между генами В и С. В соответствии с предложенным условием расстояние между генами может быть либо 15%, либо 25%. Если расстояние между генами В и С оказывается равным 15%, то ген С должен быть расположен между А и С (А-С-В). Если же расстояние будет равно 25%, то ген С должен быть расположен слева от гена А (С-А-В).

Для определения места расположения следующего гена проводится изучение расстояния от неизвестного гена до двух уже изученных. Вновь сначала появляются две точки, одна из которых затем исключается. Такая работа проводится до полного определения места расположения всех генов после чего крайний ген принимается за точку отсчёта, а остальные располагаются по отношению к нему с нарастающим эффектом в соответствии с величиной кроссинговера. Так появляется обозначение всех локусов.

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

    Перейти к лекции №17 «Основные понятия генетики. Законы Менделя»

© bookwomanslife.ru, 2024
Образовательный портал - Bookwomanslife